R. Hurtado-Gutiérrez, C. Pérez-Espigares, P.I. Hurtado
Time crystals are many-body systems whose ground state spontaneously breaks time-translation symmetry and thus exhibits long-range spatiotemporal order and robust periodic motion. Using hydrodynamics, we have recently shown how an mth-order external packing field coupled to density fluctuations in driven diffusive fluids can induce the spontaneous emergence of time-crystalline order in the form of m rotating condensates, which can be further controlled and modulated. Here we analyze this phenomenon at the microscopic level in a paradigmatic model of particle diffusion under exclusion interactions, a generalization of the weakly asymmetric simple exclusion process with a configuration-dependent field called the time-crystal lattice gas. Using extensive Monte Carlo simulations, we characterize the nonequilibrium phase transition to these complex time-crystal phases for different values of m, including the order parameter, the susceptibility and the Binder cumulant, from which we measure the critical exponents, which turn out to be within the Kuramoto universality class for oscillator synchronization. We also elucidate the condensates density profiles and velocities, confirming along the way a scaling property predicted for the higher-order condensate shapes in terms of first-order ones, discussing also novel possibilities for this promising route to time crystals.
Large deviation theory provides a framework to understand macroscopic fluctuations and collective phenomena in many-body nonequilibrium systems in terms of microscopic dynamics. In these lecture notes we discuss the large deviation statistics of the current, a central observable out of equilibrium, using mostly macroscopic fluctuation theory (MFT) but also microscopic spectral methods. Special emphasis is put on describing the optimal path leading to a rare fluctuation, as well as on different dynamical symmetry breaking phenomena that appear at the fluctuating level. We start with a brief overview of the statistics of trajectories in driven diffusive systems as described by MFT. We then discuss the additivity principle, a simplifying conjecture to compute the current distribution in many one-dimensional (1d) nonequilibrium systems, and extend this idea to generic d-dimensional driven diffusive media. Crucially, we derive a fundamental relation which strongly constrains the architecture of the optimal vector current field in $d$ dimensions, making manifest the spatiotemporal nonlocality of current fluctuations. Next we discuss the intriguing phenomenon of dynamical phase transitions (DPTs) in current fluctuations, i.e. possibility of dynamical symmetry breaking events in the trajectory statistics associated to atypical values of the current. We first analyze a discrete particle-hole symmetry-breaking DPT in the transport fluctuations of open channels, working out a Landau-like theory for this DPT as well as the joint statistics of the current and an appropriate order parameter for the transition. Interestingly, Maxwell-like violations of additivity are observed in the non-convex regimes of the joint large deviation function. We then move on to discuss time-translation symmetry breaking DPTs in periodic systems, in which the system of interest self-organizes into a coherent traveling wave that facilitates the current deviation by gathering particles/energy in a localized condensate. We also shed light on the microscopic spectral mechanism leading to these and other symmetry breaking DPTs, which is linked to an emerging degeneracy of the ground state of the associated microscopic generator, with all symmetry-breaking features encoded in the subleading eigenvectors of this degenerate subspace. The introduction of an order parameter space of lower dimensionality allows to confirm quantitatively these spectral fingerprints of DPTs. Using this spectral view on DPTs, we uncover the signatures of the recently discovered time-crystal phase of matter in the traveling-wave DPT found in many periodic diffusive systems. Using Doob’s transform to understand the underlying physics, we propose a packing-field mechanism to build programmable time-crystal phases in driven diffusive systems. We end up these lecture notes discussing some open challenges and future applications in this exciting research field.
R. Hurtado-Gutiérrez, P.I. Hurtado, C. Pérez-Espigares
Large deviation theory provides the framework to study the probability of rare fluctuations of time-averaged observables, opening new avenues of research in nonequilibrium physics. One of the most appealing results within this context are dynamical phase transitions (DPTs), which might occur at the level of trajectories in order to maximize the probability of sustaining a rare event. While the Macroscopic Fluctuation Theory has underpinned much recent progress on the understanding of symmetry-breaking DPTs in driven diffusive systems, their microscopic characterization is still challenging. In this work we shed light on the general spectral mechanism giving rise to continuous DPTs not only for driven diffusive systems, but for any jump process in which a discrete ℤn symmetry is broken. By means of a symmetry-aided spectral analysis of the Doob-transformed dynamics, we provide the conditions whereby symmetry-breaking DPTs might emerge and how the different dynamical phases arise from the specific structure of the degenerate eigenvectors. We show explicitly how all symmetry-breaking features are encoded in the subleading eigenvectors of the degenerate manifold. Moreover, by partitioning configuration space into equivalence classes according to a proper order parameter, we achieve a substantial dimensional reduction which allows for the quantitative characterization of the spectral fingerprints of DPTs. We illustrate our predictions in three paradigmatic many-body systems: (i) the 1D boundary-driven weakly asymmetric exclusion process (WASEP), which exhibits a particle-hole symmetry-breaking DPT for current fluctuations, (ii) the 3 and 4-state Potts model, which displays discrete rotational symmetry-breaking DPT for energy fluctuations, and (iii) the closed WASEP which presents a continuous symmetry-breaking DPT to a time-crystal phase characterized by a rotating condensate.
C. Pérez-Espigares, F. Carollo, J.P. Garrahan, P.I. Hurtado
Driven diffusive systems may undergo phase transitions to sustain atypical values of the current. This leads in some cases to symmetry-broken space-time trajectories which enhance the probability of such fluctuations. Here we shed light on both the macroscopic large deviation properties and the microscopic origin of such spontaneous symmetry breaking in the weakly asymmetric exclusion process. By studying the joint fluctuations of the current and a collective order parameter, we uncover the full dynamical phase diagram for arbitrary boundary driving, which is reminiscent of a ℤ2 symmetry-breaking transition. The associated joint large deviation function becomes non-convex below the critical point, where a Maxwell-like violation of the additivity principle is observed. At the microscopic level, the dynamical phase transition is linked to an emerging degeneracy of the ground state of the microscopic generator, from which the optimal trajectories in the symmetry-broken phase follow. In addition, we observe this new symmetry-breaking phenomenon in extensive rare-event simulations of the microscopic dynamics.
N. Tizón-Escamilla, C. Pérez-Espigares, P.L. Garrido, P.I. Hurtado
Dynamic phase transitions (DPTs) at the fluctuating level are one of the most intriguing phenomena of nonequilibrium physics, but their nature in realistic high-dimensional systems remains puzzling. Here we observe for the first time a DPT in the current statistics of an archetypal two-dimensional (2d) driven diffusive system, and characterize its properties using macroscopic fluctuation theory. The complex interplay among the external field, anisotropy and currents in 2d leads to a rich phase diagram, with different symmetry-broken fluctuation phases separated by lines of 1st– and 2nd-order DPTs. Order in the form of coherent jammed states emerges to hinder transport for low-current fluctuations, revealing a deep connection between rare events and self-organized structures which enhance their probability, an observation of broad implications.
Carlos Pérez-Espigares, Pedro L. Garrido, Pablo I. Hurtado
The additivity principle (AP) allows to compute the current distribution in many one-dimensional (1d) nonequilibrium systems. Here we extend this conjecture to general d-dimensional driven diffusive systems, and validate its predictions against both numerical simulations of rare events and microscopic exact calculations of three paradigmatic models of diffusive transport in d=2. Crucially, the existence of a structured current vector field at the fluctuating level, coupled to the local mobility, turns out to be essential to understand current statistics in d>1. We prove that, when compared to the straightforward extension of the AP to high-d, the so-called weak AP always yields a better minimizer of the macroscopic fluctuation theory action for current statistics.
Since the discovery of long-time tails, it has been clear that Fourier’s law in low dimensions is typically anomalous, with a size-dependent heat conductivity, though the nature of the anomaly remains puzzling. The conventional wisdom, supported by recent results from nonlinear fluctuating hydrodynamics, is that the anomaly is universal in 1d momentum-conserving systems and belongs in the Kardar-Parisi-Zhang universality class. Here we challenge this picture by using a novel scaling method to show unambiguously that universality breaks down in the paradigmatic 1d diatomic hard-point fluid. Hydrodynamic profiles for a broad set of gradients, densities and sizes all collapse onto an universal master curve, showing that (anomalous) Fourier’s law holds even deep into the nonlinear regime. This allows to solve the macroscopic transport problem for this model, a solution which compares flawlessly with data and, interestingly, implies the existence of a bound on the heat current in terms of pressure. These results question the use of standard fluctuating hydrodynamics to understand anomalous Fourier’s law in 1d, offering a new perspective on transport and its anomalies in low dimensions.
We use extensive computer simulations to probe local thermodynamic equilibrium (LTE) in a quintessential model fluid, the two-dimensional hard-disks system. We show that macroscopic LTE is a property much stronger than previously anticipated, even in the presence of important finite size effects, revealing a remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. This allows us to measure the fluid’s equation of state in simulations far from equilibrium, with an excellent accuracy comparable to the best equilibrium simulations. Subtle corrections to LTE are found in the fluctuations of the total energy which strongly point out to the nonlocality of the nonequilibrium potential governing the fluid’s macroscopic behavior out of equilibrium.
Usamos cookies para asegurar que te damos la mejor experiencia en nuestra web. Si continúas usando este sitio, asumiremos que estás de acuerdo con ello.Aceptar