Category Archives: open quantum systems

Squeezing light to get non-classical work in quantum engines

A. Tejero, D. Manzano, P.I. Hurtado

Light can be squeezed by reducing the quantum uncertainty of the electric field for some phases. We show how to use this purely-quantum effect to extract net mechanical work from radiation pressure in a simple quantum photon engine. Along the way, we demonstrate that the standard definition of work in quantum systems is not appropriate in this context, as it does not capture the energy leaked to these quantum degrees of freedom. We use these results to design an Otto engine able to produce mechanical work from squeezing baths, in the absence of thermal gradient. Interestingly, while work extraction from squeezing generally improves for low temperatures, there exists a nontrivial squeezing-dependent temperature for which work production is maximal, demonstrating the complex interplay between thermal and squeezing effects.

arXiv:2408.15085

An atom-doped photon engine: Extracting mechanical work from a quantum system via radiation pressure

A. Tejero, D. Manzano, P.I. Hurtado

The possibility of efficiently converting heat into work at the microscale has triggered an intense research effort to understand quantum heat engines, driven by the hope of quantum superiority over classical counterparts. In this work, we introduce a model featuring an atom-doped optical quantum cavity propelling a classical piston through radiation pressure. The model, based on the Jaynes-Cummings Hamiltonian of quantum electrodynamics, demonstrates the generation of mechanical work through thermal energy injection. We establish the equivalence of the piston expansion work with Alicki’s work definition, analytically for quasistatic transformations and numerically for finite time protocols. We further employ the model to construct quantum Otto and Carnot engines, comparing their performance in terms of energetics, work output, efficiency, and power under various conditions. This model thus provides a platform to extract useful work from an open quantum system to generate net motion, and sheds light on the quantum concepts of work and heat.

Phys. Rev. E 108, 014107 (2023); arXiv:2311.15712

Coupled activity-current fluctuations in open quantum systems under strong symmetries

D. Manzano, M.A. Martínez-García, P.I. Hurtado

Strong symmetries in open quantum systems lead to broken ergodicity and the emergence of multiple degenerate steady states. From a quantum jump (trajectory) perspective, the appearance of multiple steady states is related to underlying dynamical phase transitions (DPTs) at the fluctuating level, leading to a dynamical coexistence of different transport channels classified by symmetry. In this paper, we investigate how strong symmetries affect both the transport properties and the activity patterns of a particular class of Markovian open quantum system, a three-qubit model under the action of a magnetic field and in contact with a thermal bath. We find a pair of twin DPTs in exciton current statistics, induced by the strong symmetry and related by time reversibility, where a zero-current exchange-antisymmetric phase coexists with a symmetric phase of negative exciton current. On the other hand, the activity statistics exhibits a single DPT where the symmetric and antisymmetric phases of different but nonzero activities dynamically coexists. The presence of a strong symmetry under non-equilibrium conditions implies non-analyticities in the dynamical free energy in the dual activity-current plane, including an activity-driven current lockdown phase for activities below some critical threshold. Finally, we also study the effect of a symmetry-breaking, ergodicity-restoring dephasing channel on the coupled activity-current statistics for this model. Interestingly, we observe that while this dephasing noise destroys the symmetry-induced DPTs, the underlying topological symmetry leaves a dynamical fingerprint in the form of intermittent, bursty on/off dynamics between the different symmetry sectors.

New J. Phys. 23, 073044 (2021); arXiv:2104.13176

Quantum systems in and out of equilibrium: Fundamentals, dynamics and applications

P.L. Garrido, P.I. Hurtado, D. Manzano, F. de los Santos

The special issue of European Physical Journal Special Topics has been finally published. It originated at the 14th Granada Seminar on Quantum Systems in and out of equilibrium: Fundamentals, dynamics and applications, which took place in 2017, from June 20 to June 23 in Granada, Spain. This edition was sponsored by the University of Granada through the Department of Electromagnetism and Physics of the Matter and the Faculty of Sciences, the Spanish Minister of Economy, Industry and Competitiveness, and the European Physical Society. There were in this edition a total of 57 lectures and 27 poster contributions covering quantum aspects of thermalization, quantum transport, quantum effects in condensed matter, biology, quantum computation, open quantum systems, quantum fluctuations and large deviations, and quantum thermodynamics.

Eur. Phys. J Special Topics 227, 201 (2018)

Harnessing symmetry to control quantum transport

D. Manzano and P.I. Hurtado

Controlling transport in quantum systems holds the key to many promising quantum technologies. Here we review the power of symmetry as a resource to manipulate quantum transport, and apply these ideas to engineer novel quantum devices. Using tools from open quantum systems and large deviation theory, we show that symmetry-mediated control of transport is enabled by a pair of twin dynamic phase transitions in current statistics, accompanied by a coexistence of different transport channels. By playing with the symmetry decomposition of the initial state, one can modulate the importance of the different transport channels and hence control the flowing current. Motivated by the problem of energy harvesting we illustrate these ideas in open quantum networks, an analysis which leads to the design of a symmetry-controlled quantum thermal switch. We review an experimental setup recently proposed for symmetry-mediated quantum control in the lab based on a linear array of atom-doped optical cavities, and the possibility of using transport as a probe to uncover hidden symmetries, as recently demonstrated in molecular junctions, is also discussed. Overall, these results demonstrate the importance of symmetry not only as a organizing principle in physics but also as a tool to control quantum systems.

Adv. in Phys. 67, 1 (2018)arXiv:1707.07895