Category Archives: driven diffusive systems

Building continuous time crystals from rare events

R. Hurtado-Gutiérrez, F. Carollo, C. Pérez-Espigares, P. I. Hurtado

Symmetry-breaking dynamical phase transitions (DPTs) abound in the fluctuations of nonequilibrium systems. Here we show that the spectral features of a particular class of DPTs exhibit the fingerprints of the recently discovered time-crystal phase of matter. Using Doob’s transform as a tool, we provide a mechanism to build time-crystal generators from the rare event statistics of some driven diffusive systems. An analysis of the Doob’s smart field in terms of the order parameter of the transition then leads to the time-crystal exclusion process (tcEP), a stochastic lattice gas subject to an external packing field which presents a clear-cut steady-state phase transition to a time-crystalline phase which breaks continuous time-translation symmetry and displays rigidity and long-range spatio-temporal order. A hydrodynamic analysis of the tcEP transition uncovers striking similarities, but also key differences, with the Kuramoto synchronization transition. Possible experimental realizations of the tcEP are also discussed.

arXiv:1912.02733

The kinetic exclusion process: A tale of two fields

C. Gutiérrez-Ariza, P. I. Hurtado

We introduce a general class of stochastic lattice gas models, and derive their fluctuating hydrodynamics description in the large size limit under a local equilibrium hypothesis. The model consists in energetic particles on a lattice subject to exclusion interactions, which move and collide stochastically with energy-dependent rates. The resulting fluctuating hydrodynamics equations exhibit nonlinear coupled particle and energy transport, including particle currents due to temperature gradients (Soret effect) and energy flow due to concentration gradients (Dufour effect). The microscopic dynamical complexity is condensed in just two matrices of transport coefficients: the diffusivity matrix (or equivalently the Onsager matrix) generalizing Fick-Fourier’s law, and the mobility matrix controlling current fluctuations, which are coupled via a fluctuation-dissipation theorem. Interestingly, the positivity of entropy production in the system then leads to detailed constraints on the microscopic dynamics. We further demonstrate the Gaussian character of the noise terms affecting the local currents. The so-called kinetic exclusion process has as limiting cases two of the most paradigmatic models of nonequilibrium physics, namely the symmetric simple exclusion process of particle diffusion and the Kipnis-Marchioro-Presutti model of heat flow, making it the ideal testbed where to further develop modern theories of nonequilibrium behavior.

J. Stat. Mech. (2019) 103203; arXiv:1905.03142

Sampling rare events across dynamical phase transitions

C. Pérez-Espigares, P. I. Hurtado

Interacting particle systems with many degrees of freedom may undergo phase transitions to sustain atypical fluctuations of dynamical observables such as the current or the activity. This leads in some cases to symmetry-broken space-time trajectories which enhance the probability of such events due to the emergence of ordered structures. Despite their conceptual and practical importance, these dynamical phase transitions (DPTs) at the trajectory level are difficult to characterize due to the low probability of their occurrence. However, during the last decade advanced computational techniques have been developed to measure rare events in simulations of many-particle systems that allow for the first time the direct observation and characterization of these DPTs. Here we review the application of a particular rare-event simulation technique, based on cloning Monte Carlo methods, to characterize DPTs in paradigmatic stochastic lattice gases. In particular, we describe in detail some tricks and tips of the trade, paying special attention to the measurement of order parameters capturing the physics of the different DPTs, as well as to the finite-size effects (both in the system size and number of clones) that affect the measurements. Overall, we provide a consistent picture of the phenomenology associated with DPTs and their measurement.

Chaos 29, 083106 (2019); arXiv:1902.01276

Infinite family of universal profiles for heat current statistics in Fourier’s law

P. L. Garrido, P. I. Hurtado, N. Tizón-Escamilla

Using tools from large deviation theory, we study fluctuations of the heat current in a model of d-dimensional incompressible fluid driven out of equilibrium by a temperature gradient. We find that the most probable temperature fields sustaining atypical values of the global current can be naturally classified in an infinite set of curves, allowing us to exhaustively analyze their topological properties and to define universal profiles onto which all optimal fields collapse. We also compute the statistics of empirical heat current, where we find remarkable logarithmic tails for large current fluctuations orthogonal to the thermal gradient. Finally, we determine explicitly a number of cumulants of the current distribution, finding remarkable relations between them.

Phys. Rev. E 99, 022134 (2019); arXiv:1810.10778

Quantum systems in and out of equilibrium: Fundamentals, dynamics and applications

P.L. Garrido, P.I. Hurtado, D. Manzano, F. de los Santos

The special issue of European Physical Journal Special Topics has been finally published. It originated at the 14th Granada Seminar on Quantum Systems in and out of equilibrium: Fundamentals, dynamics and applications, which took place in 2017, from June 20 to June 23 in Granada, Spain. This edition was sponsored by the University of Granada through the Department of Electromagnetism and Physics of the Matter and the Faculty of Sciences, the Spanish Minister of Economy, Industry and Competitiveness, and the European Physical Society. There were in this edition a total of 57 lectures and 27 poster contributions covering quantum aspects of thermalization, quantum transport, quantum effects in condensed matter, biology, quantum computation, open quantum systems, quantum fluctuations and large deviations, and quantum thermodynamics.

Eur. Phys. J Special Topics 227, 201 (2018)

Dynamical criticality in driven systems: non-perturbative physics, microscopic origin and direct observation

C. Pérez-Espigares, F. Carollo, J.P. Garrahan, P.I. Hurtado

Driven diffusive systems may undergo phase transitions to sustain atypical values of the current. This leads in some cases to symmetry-broken space-time trajectories which enhance the probability of such fluctuations. Here we shed light on both the macroscopic large deviation properties and the microscopic origin of such spontaneous symmetry breaking in the weakly asymmetric exclusion process. By studying the joint fluctuations of the current and a collective order parameter, we uncover the full dynamical phase diagram for arbitrary boundary driving, which is reminiscent of a ℤ2 symmetry-breaking transition. The associated joint large deviation function becomes non-convex below the critical point, where a Maxwell-like violation of the additivity principle is observed. At the microscopic level, the dynamical phase transition is linked to an emerging degeneracy of the ground state of the microscopic generator, from which the optimal trajectories in the symmetry-broken phase follow. In addition, we observe this new symmetry-breaking phenomenon in extensive rare-event simulations of the microscopic dynamics.

Phys. Rev. E 98, 060102(R) (2018); arXiv:1807.10235

Dynamical phase transition for current statistics in a simple driven diffusive system

Carlos P. Espigares, Pedro L. Garrido, Pablo I. Hurtado

We consider fluctuations of the time-averaged current in the one-dimensional weakly-asymmetric exclusion process on a ring. The optimal density profile which sustains a given fluctuation exhibits an instability for low enough currents, where it becomes time-dependent. This instability corresponds to a dynamical phase transition in the system fluctuation behavior: while typical current fluctuations result from the sum of weakly-correlated local events and are still associated with the flat, steady-state density profile, for currents below a critical threshold the system self-organizes into a macroscopic jammed state in the form of a coherent traveling wave, that hinders transport of particles and thus facilitates a time-averaged current fluctuation well below the average current. We analyze in detail this phenomenon using advanced Monte Carlo simulations, and work out macroscopic fluctuation theory predictions, finding very good agreement in all cases. In particular, we study not only the current large deviation function, but also the critical current threshold, the associated optimal density profiles and the traveling wave velocity, analyzing in depth finite-size effects and hence providing a detailed characterization of the dynamical transition.

Phys. Rev. E 87, 032115 (2013)arXiv:1212.4640

Compact Waves in Microscopic Nonlinear Diffusion

Pablo I. Hurtado, Paul L. Krapivsky

We analyze the spread of a localized peak of energy into vacuum for nonlinear diffusive processes. In contrast with standard diffusion, the nonlinearity results in a compact wave with a sharp front separating the perturbed region from vacuum. In spatial dimensions, the front advances as t^{1/(2+da)} according to hydrodynamics, with the nonlinearity exponent. We show that fluctuations in the front position grow as ∼ tμη, where μ<1/(2+dais a new exponent that we measure and η is a random variable whose distribution we characterize. Fluctuating corrections to hydrodynamic profiles give rise to an excess penetration into vacuum, revealing scaling behaviors and robust features. We also examine the discharge of a nonlinear rarefaction wave into vacuum. Our results suggest the existence of universal scaling behaviors at the fluctuating level in nonlinear diffusion.

Phys. Rev. E 85, 060103(R) (2012); arXiv:1112.5988

Spontaneous Symmetry Breaking at the Fluctuating Level

Pablo I. Hurtado, Pedro L. Garrido

Phase transitions not allowed in equilibrium steady states may happen however at the fluctuating level. We observe for the first time this striking and general phenomenon measuring current fluctuations in an isolated diffusive system. While small fluctuations result from the sum of weakly-correlated local events, for currents above a critical threshold the system self-organizes into a coherent traveling wave which facilitates the current deviation by gathering energy in a localized packet, thus breaking translation invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns which enhance their probability.

Phys. Rev. Lett. 107, 180601 (2011); arXiv:1106.0690