R. Hurtado-Gutiérrez, C. Pérez-Espigares, P.I. Hurtado

Time crystals are many-body systems whose ground state spontaneously breaks time-translation symmetry and thus exhibits long-range spatiotemporal order and robust periodic motion. Using hydrodynamics, we have recently shown how an mth-order external packing field coupled to density fluctuations in driven diffusive fluids can induce the spontaneous emergence of time-crystalline order in the form of m rotating condensates, which can be further controlled and modulated. Here we analyze this phenomenon at the microscopic level in a paradigmatic model of particle diffusion under exclusion interactions, a generalization of the weakly asymmetric simple exclusion process with a configuration-dependent field called the time-crystal lattice gas. Using extensive Monte Carlo simulations, we characterize the nonequilibrium phase transition to these complex time-crystal phases for different values of m, including the order parameter, the susceptibility and the Binder cumulant, from which we measure the critical exponents, which turn out to be within the Kuramoto universality class for oscillator synchronization. We also elucidate the condensates density profiles and velocities, confirming along the way a scaling property predicted for the higher-order condensate shapes in terms of first-order ones, discussing also novel possibilities for this promising route to time crystals.









The special issue of European Physical Journal Special Topics has been finally published. It originated at the 14th Granada Seminar on Quantum Systems in and out of equilibrium: Fundamentals, dynamics and applications, which took place in 2017, from June 20 to June 23 in Granada, Spain. This edition was sponsored by the University of Granada through the Department of Electromagnetism and Physics of the Matter and the Faculty of Sciences, the Spanish Minister of Economy, Industry and Competitiveness, and the European Physical Society. There were in this edition a total of 57 lectures and 27 poster contributions covering quantum aspects of thermalization, quantum transport, quantum effects in condensed matter, biology, quantum computation, open quantum systems, quantum fluctuations and large deviations, and quantum thermodynamics.