Category Archives: nonequilibrium physics

Quantum systems in and out of equilibrium: Fundamentals, dynamics and applications

P.L. Garrido, P.I. Hurtado, D. Manzano, F. de los Santos

The special issue of European Physical Journal Special Topics has been finally published. It originated at the 14th Granada Seminar on Quantum Systems in and out of equilibrium: Fundamentals, dynamics and applications, which took place in 2017, from June 20 to June 23 in Granada, Spain. This edition was sponsored by the University of Granada through the Department of Electromagnetism and Physics of the Matter and the Faculty of Sciences, the Spanish Minister of Economy, Industry and Competitiveness, and the European Physical Society. There were in this edition a total of 57 lectures and 27 poster contributions covering quantum aspects of thermalization, quantum transport, quantum effects in condensed matter, biology, quantum computation, open quantum systems, quantum fluctuations and large deviations, and quantum thermodynamics.

Eur. Phys. J Special Topics 227, 201 (2018)

Dynamical criticality in driven systems: non-perturbative physics, microscopic origin and direct observation

C. Pérez-Espigares, F. Carollo, J.P. Garrahan, P.I. Hurtado

Driven diffusive systems may undergo phase transitions to sustain atypical values of the current. This leads in some cases to symmetry-broken space-time trajectories which enhance the probability of such fluctuations. Here we shed light on both the macroscopic large deviation properties and the microscopic origin of such spontaneous symmetry breaking in the weakly asymmetric exclusion process. By studying the joint fluctuations of the current and a collective order parameter, we uncover the full dynamical phase diagram for arbitrary boundary driving, which is reminiscent of a ℤ2 symmetry-breaking transition. The associated joint large deviation function becomes non-convex below the critical point, where a Maxwell-like violation of the additivity principle is observed. At the microscopic level, the dynamical phase transition is linked to an emerging degeneracy of the ground state of the microscopic generator, from which the optimal trajectories in the symmetry-broken phase follow. In addition, we observe this new symmetry-breaking phenomenon in extensive rare-event simulations of the microscopic dynamics.

Phys. Rev. E 98, 060102(R) (2018); arXiv:1807.10235

Harnessing symmetry to control quantum transport

D. Manzano and P.I. Hurtado

Controlling transport in quantum systems holds the key to many promising quantum technologies. Here we review the power of symmetry as a resource to manipulate quantum transport, and apply these ideas to engineer novel quantum devices. Using tools from open quantum systems and large deviation theory, we show that symmetry-mediated control of transport is enabled by a pair of twin dynamic phase transitions in current statistics, accompanied by a coexistence of different transport channels. By playing with the symmetry decomposition of the initial state, one can modulate the importance of the different transport channels and hence control the flowing current. Motivated by the problem of energy harvesting we illustrate these ideas in open quantum networks, an analysis which leads to the design of a symmetry-controlled quantum thermal switch. We review an experimental setup recently proposed for symmetry-mediated quantum control in the lab based on a linear array of atom-doped optical cavities, and the possibility of using transport as a probe to uncover hidden symmetries, as recently demonstrated in molecular junctions, is also discussed. Overall, these results demonstrate the importance of symmetry not only as a organizing principle in physics but also as a tool to control quantum systems.

Adv. in Phys. 67, 1 (2018)arXiv:1707.07895

Structure of the optimal path to a fluctuation

N. Tizón-Escamilla, P.I. Hurtado and P.L. Garrido

Macroscopic fluctuations have become an essential tool to understand physics far fromfig equilibrium due to the link between their statistics and nonequilibrium ensembles. The optimal path leading to a fluctuation encodes key information on this problem, shedding light on e.g. the reasons behind the enhanced probability of rare events out of equilibrium, the possibility of dynamic phase transitions and new symmetries. This makes the understanding of the properties of these optimal paths a central issue. Here we derive a fundamental relation which strongly constraints the architecture of these optimal paths for general d-dimensional nonequilibrium diffusive systems, and implies a non-trivial structure for the dominant current vector fields. Interestingly, this general relation (which encompasses and explains previous results) makes manifest the spatio-temporal non-locality of the current statistics and the associated optimal trajectories.

Phys. Rev. E 95, 032119 (2017);  arXiv:1611.02500

Weak additivity principle for current statistics in d-dimensions

Carlos Pérez-Espigares, Pedro L. Garrido, Pablo I. Hurtado

screenshot_14The additivity principle (AP) allows to compute the current distribution in many one-dimensional (1d) nonequilibrium systems. Here we extend this conjecture to general d-dimensional driven diffusive systems, and validate its predictions against both numerical simulations of rare events and microscopic exact calculations of three paradigmatic models of diffusive transport in d=2. Crucially, the existence of a structured current vector field at the fluctuating level, coupled to the local mobility, turns out to be essential to understand current statistics in d>1. We prove that, when compared to the straightforward extension of the AP to high-d, the so-called weak AP always yields a better minimizer of the macroscopic fluctuation theory action for current statistics.

Phys. Rev. E 93, 040103(R) (2016)arXiv:1511.08373

Statistics of the dissipated energy in driven diffusive systems

A. Lasanta, Pablo I. Hurtado, A. Prados

screenshot_56Understanding the physics of non-equilibrium systems remains as one of the major open questions in statistical physics. This problem can be partially handled by investigating macroscopic fluctuations of key magnitudes that characterise the non-equilibrium behaviour of the system of interest; their statistics, associated structures and microscopic origin. During the last years, some new general and powerful methods have appeared to delve into fluctuating behaviour that have drastically changed the way to address this problem in the realm of diffusive systems: macroscopic fluctuation theory (MFT) and a set of advanced computational techniques that make it possible to measure the probability of rare events. Notwithstanding, a satisfactory theory is still lacking in a particular case of intrinsically non-equilibrium systems, namely those in which energy is not conserved but dissipated continuously in the bulk of the system (e.g. granular media). In this work, we put forward the dissipated energy as a relevant quantity in this case and analyse in a pedagogical way its fluctuations, by making use of a suitable generalisation of macroscopic fluctuation theory to driven dissipative media.

Eur. Phys. J. E 39, 35 (2016); arXiv:1508.07635

Violation of universality in anomalous Fourier’s law

Pablo I. Hurtado, Pedro L. Garrido

fig3Since the discovery of long-time tails, it has been clear that Fourier’s law in low dimensions is typically anomalous, with a size-dependent heat conductivity, though the nature of the anomaly remains puzzling. The conventional wisdom, supported by recent results from nonlinear fluctuating hydrodynamics, is that the anomaly is universal in 1d momentum-conserving systems and belongs in the Kardar-Parisi-Zhang universality class. Here we challenge this picture by using a novel scaling method to show unambiguously that universality breaks down in the paradigmatic 1d diatomic hard-point fluid. Hydrodynamic profiles for a broad set of gradients, densities and sizes all collapse onto an universal master curve, showing that (anomalous) Fourier’s law holds even deep into the nonlinear regime. This allows to solve the macroscopic transport problem for this model, a solution which compares flawlessly with data and, interestingly, implies the existence of a bound on the heat current in terms of pressure. These results question the use of standard fluctuating hydrodynamics to understand anomalous Fourier’s law in 1d, offering a new perspective on transport and its anomalies in low dimensions.

Nature Sci. Rep. 6, 38823 (2016)arXiv:1506.03234

Probing local equilibrium in nonequilibrium fluids

J.J. del Pozo, P.L. Garrido, P.I. Hurtado

We use extensive computer simulations to probe local thermodynamic equilibrium (LTE) in a quintessential model fluid, the two-dimensional hard-disks system. We show that macroscopic LTE is a property much stronger than previously anticipated, even in the presence of important finite size effects, revealing a remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. This allows us to measure the fluid’s equation of state in simulations far from equilibrium, with an excellent accuracy comparable to the best equilibrium simulations. Subtle corrections to LTE are found in the fluctuations of the total energy which strongly point out to the nonlocality of the nonequilibrium potential governing the fluid’s macroscopic behavior out of equilibrium.

Phys. Rev. E 92, 022117 (2015)arXiv:1407.3113

Scaling laws and bulk-boundary decoupling in heat flow

J.J. del Pozo, P.L. Garrido, P.I. Hurtado

When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier’s law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier’s law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows to measure for the first time the marginal anomaly of the heat conductivity predicted for hard disks.

Additional material: video demonstrating the scaling procedure (credit: J. del Pozo 2014)

Phys. Rev. E 91, 032116 (2015)arXiv:1401.5244

Thermodynamics of currents in nonequilibrium diffusive systems: theory and simulation

Pablo I. Hurtado, Carlos P. Espigares, Jesus J. del Pozo, Pedro L. Garrido

screenshot_16Understanding the physics of nonequilibrium systems remains as one of the major challenges of theoretical physics. This problem can be cracked in part by investigating the macroscopic fluctuations of the currents characterizing nonequilibrium behavior, their statistics and associated structures. This fundamental line of research has been severely hampered by the overwhelming complexity of this problem. However, during the last years two new general methods have appeared to investigate fluctuating behavior that are changing radically our understanding of nonequilibrium physics: a powerful macroscopic fluctuation theory (MFT) and a set of advanced computational techniques to measure rare events. In this work we study the statistics of current fluctuations in nonequilibrium diffusive systems, using macroscopic fluctuation theory as theoretical framework, and advanced Monte Carlo simulations of several stochastic lattice gases as a laboratory to test the emerging picture. Our quest will bring us from (1) the confirmation of an additivity conjecture in one and two dimensions, which considerably simplifies the MFT complex variational problem to compute the thermodynamics of currents, to (2) the discovery of novel isometric fluctuation relations, which opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations, and to (3) the observation of coherent structures in fluctuations, which appear via dynamic phase transitions involving a spontaneous symmetry breaking event at the fluctuating level. The clear-cut observation, measurement and characterization of these unexpected phenomena, well described by MFT, strongly support this theoretical scheme as the natural theory to understand the thermodynamics of currents in nonequilibrium diffusive media, opening new avenues of research in nonequilibrium physics.

J. Stat. Phys. 154, 214 (2014)arXiv:1312.1246