Category Archives: dynamic phase transitions

Symmetry and the thermodynamics of currents in open quantum systems

Daniel Manzano, Pablo I. Hurtado

Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

Phys. Rev. B 90, 125138 (2014)arXiv:1310.7370

Dynamical phase transition for current statistics in a simple driven diffusive system

Carlos P. Espigares, Pedro L. Garrido, Pablo I. Hurtado

We consider fluctuations of the time-averaged current in the one-dimensional weakly-asymmetric exclusion process on a ring. The optimal density profile which sustains a given fluctuation exhibits an instability for low enough currents, where it becomes time-dependent. This instability corresponds to a dynamical phase transition in the system fluctuation behavior: while typical current fluctuations result from the sum of weakly-correlated local events and are still associated with the flat, steady-state density profile, for currents below a critical threshold the system self-organizes into a macroscopic jammed state in the form of a coherent traveling wave, that hinders transport of particles and thus facilitates a time-averaged current fluctuation well below the average current. We analyze in detail this phenomenon using advanced Monte Carlo simulations, and work out macroscopic fluctuation theory predictions, finding very good agreement in all cases. In particular, we study not only the current large deviation function, but also the critical current threshold, the associated optimal density profiles and the traveling wave velocity, analyzing in depth finite-size effects and hence providing a detailed characterization of the dynamical transition.

Phys. Rev. E 87, 032115 (2013)arXiv:1212.4640

Spontaneous Symmetry Breaking at the Fluctuating Level

Pablo I. Hurtado, Pedro L. Garrido

Phase transitions not allowed in equilibrium steady states may happen however at the fluctuating level. We observe for the first time this striking and general phenomenon measuring current fluctuations in an isolated diffusive system. While small fluctuations result from the sum of weakly-correlated local events, for currents above a critical threshold the system self-organizes into a coherent traveling wave which facilitates the current deviation by gathering energy in a localized packet, thus breaking translation invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns which enhance their probability.

Phys. Rev. Lett. 107, 180601 (2011); arXiv:1106.0690