Evolution in host-pathogen systems: emergent trade-offs and self-evolved criticality.

Understanding how evolution works is an open question in ecological systems. In the last years there has been an effort to understand host-parasite systems. Despite the advances in the field of computational epidemiology, there are many features of the observed viral strains that we cannot understand yet: why are most viruses mild? How does natural selection operate in these systems? How does co-evolution with host emerges? In this talk, I will review a stochastic evolutionary model that displays an emergent trade-off between transmission and virulence by a self-organization mechanism, called «self-evolved criticality». I will show how this self-evolved criticality regulates the virulence of the epidemy, making it mild, and how extensions of this model can give new insights into the field of evolutionary biology.

Conferenciante: Víctor Buendía Ruiz-Azuaga. Departamento de Electromagnetismo y Física de la Materia. Universidad de Granada

Fecha/Hora: Martes 18 de diciembre, 12:00h.

Lugar: Aula de Informática (F6). Departamento de Física de la Materia. Facultad de Ciencias.

 

The statistical mechanics of cortical asynchronous states

Cortical networks are shaped by the combined action of excitatory and inhibitory interactions. We elucidate a general noise-induced effect that we call “Jensen’s force” –stemming from the combined effect of excitation/inhibition balance and network sparsity– which is responsible for generating a phase of self-sustained low activity in excitation-inhibition networks. The uncovered phase reproduces all key empirically-observed features of cortical networks in the so-called asynchronous state, characterized by low, un-correlated and highly-irregular activity. Through a parsimonious model we resolve a number of long-standing issues, such as proving that activity can be arbitrarily low, but still self-sustained even in the complete absence of external stimuli or driving. This approach opens new avenues for theoretical and conceptual understanding of the phases and phase transitions of actual neural networks, from a broad statistical-mechanics perspective, with the aim to elucidate how the cortex processes information and computes.

Conferenciante: Pablo Villegas Góngora. Departamento de Electromagnetismo y Física de la Materia. Universidad de Granada

Fecha/Hora: Jueves 29 de Noviembre, 12:00h.

Lugar: Aula de Informática (F6). Departamento de Física de la Materia. Facultad de Ciencias.

 

Anomalies, Rare Events, and Brownian Motion.

In one of his celebrated 1905 papers, Albert Einstein proposed for the first time a statistical interpretation of Robert Brown’s innocent observation based on the corpuscular constitution of matter. His theory stated that the long-time motion of a Brownian particle is diffusive whereas the probability distribution of the particle displacement is Gaussian. For more than one hundred years these predictions were systematically validated on real systems and the coexistence between Diffusivity and Gaussianity became a paradigm. However, recent experiments on mesoscopic particle systems have claimed the existence of a time regime where diffusion is not accompanied by a purely Gaussian distribution of displacements. In this talk I will discuss these recent observations as well as those minimal stochastic models proposed to rationalize the new intriguing experimental phenomenology. Using molecular dynamics simulations I will further discuss the emergence of the hypothetical diffusive yet non-Gaussian regime in glass- and gel-forming liquids. I will conclude my talk by exploring the connection between non-Gaussian dynamics and system topology.

Conferenciante: Sándalo Roldán-Vargas. Max Planck Institute for the Physics of Complex Systems.

Fecha/Hora: Jueves 8 de Noviembre, 12:00h.

Lugar: Aula de Informática (F6). Departamento de Física de la Materia. Facultad de Ciencias.

 

Brain Networks as a Predictor of Aging Along Lifespan

The chronological age (CHA) differs from the biological one. While the former is defined as the time running as birth, the latter quantifies the maturity level that an individual (or an organ) has at the operational level. In relation with the brain, the discrepancy between the brain age and CHA might work as a biomarker for quantifying deterioration as a result of disease or improvement after some treatment or therapy, which has unlimited applications. Here, I will talk about recent results from our laboratory addressing whether or not  the CHA of an individual can be predicted  from the brain connectivity patterns. In particular, by building functional (resting-state) and structural (tractography) brain networks from neuroimages of healthy participants (N=155) ranging from 10 to 80 years, we apply machine learning methods to define  the brain-connectome age (BCA) –the age estimator resulting from the structure-function connectome–. We next compared BCA to CHA to find that   the connectivity between basal ganglia and thalamus to frontal areas, a.k.a. the fronto-striato-thalamic circuit, makes the major contribution to age estimation. Notably, the same methodology can be generally applied to identify the structural-functional brain network patterns correlating to other biomarkers than CHA.

Conferenciante: Jesus M. Cortes. IKERBASQUE: The Basque Foundation for Science, and Biocruces Health Research Institute, España.

Fecha/Hora: Miércoles 31 de Octubre, 12:00h.

Lugar: Aula de Informática (F6). Departamento de Física de la Materia. Facultad de Ciencias.

Symmetry-breaking in the dynamical fluctuations of driven diffusive systems

Driven diffusive systems may undergo phase transitions to sustain atypical values of the current. This leads in some cases to symmetry-broken space-time trajectories which enhance the probability of such fluctuations. In this talk I will shed light on both the macroscopic large deviation properties and the microscopic origin of such spontaneous symmetry breaking in the paradigmatic weakly asymmetric exclusion process. By studying the joint fluctuations  of the current and a collective order parameter, I will uncover the full dynamical phase diagram for arbitrary boundary driving. The associated joint large deviation function becomes non-convex below the critical point, where a Maxwell-like violation of the additivity principle is observed. At the microscopic level, the dynamical phase transition is linked to an emerging degeneracy of the ground state of the microscopic generator, from which the optimal trajectories in the symmetry-broken phase follow. Finally, I will show how this new symmetry-breaking phenomenon is observed in extensive rare-event simulations of the microscopic dynamics.

Conferenciante: Carlos Perez-Espigares. Universidad de Granada.

Fecha/Hora: Jueves 11 de Octubre, 12:00h.

Lugar: Aula de Informática (F6). Departamento de Física de la Materia. Facultad de Ciencias.

 

An itinerant oscillator model with cage inertia for an intruder in granular liquid experiments

Recent experiments with a rotating probe immersed in weakly fuidized granular materials show a complex behavior on a wide range of timescales [1]. Viscous-like relaxation at high frequency is accompanied by an almost harmonic dynamical trap- ping at intermediate times, with possibly anomalous long time behavior in the form of super-diffusion. Inspired by the Itinerant Oscillator model for diffusion in molecular liquids, and other models with coupled thermostats acting at different timescales, here we discuss a new model able to account for fast viscous relaxation, dynamical trapping and super-diffusion at long times. The main difference with respect to liquids, is a non- negligible cage inertia for the surrounding (granular) fluid, which allows it to sustain a slow but persistent motion for long times. The computed velocity power density spectra and mean-squared displacement qualitatively reproduce the experimental findings. We also discuss the linear response to external perturbations and the tail of the distribution of persistency time, which is associated with superdiffusion, and whose cut-off time is determined by cage inertia [2].

References
[1] C. Scalliet, A. Gnoli, A. Puglisi, and A. Vulpiani, Phys. Rev. Lett. 114, 198001 (2015).
[2] A. Lasanta, A. Puglisi, J. Chem. Phys. 143, 064511 (2015).

Conferenciante: Antonio Lasanta. Universidad de Extremadura.

Fecha/Hora: Jueves 23 de Junio de 2016, a las 12:30.

Lugar: Aula de Física Computacional del Departamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias.

Lasanta

 

Self-organized Bistability

Self-organized criticality elucidates the conditions under which physical and biological systems tune themselves to the edge of a second-order phase transition, with scale invariance. Motivated by the empirical observation of bimodal distributions of activity in neuroscience and other fields, we propose and analyze a theory for the self-organization to the point of phase-coexistence in systems exhibiting a first-order phase transition. It explains the emergence of regular avalanches with attributes of scale-invariance which coexist with huge anomalous ones, with realizations in many fields.

 

Conferenciante: Serena di Santo, Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada.

Fecha/Hora: Miércoles 1 de Junio de 2016, a las 12:30.

Lugar: Aula de Física Computacional del Departamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias.

 

Figure2

Symmetries and energy transport in open quantum systems.

Symmetry is a key concept in quantum mechanics and it plays an important role in many systems found in Nature, including many biological systems as photosynthetic complexes. Recently, the implications of symmetries in the thermodynamics of currents in open quantum systems have been studied [1]. This analysis can be applied to photosynthetic complexes operating in a steady-state scenario [2] because some of these systems are highly symmetric. Furthermore, the detection of symmetries in molecular components is a non-trivial matter. Recently, a technique based in measuring quantum currents to find signatures of symmetries has been developed [3].

In this talk we will discuss the implications of symmetries in biological complexes and their transport properties. We will also discuss how to detect symmetries in unknown molecular systems by the use of a simple and realistic framework.

 

Bibliography:

[1] D. Manzano and P. I. Hurtado. Phys. Rev. B 90, 125138 (2014).

[2] P. Brumer and M. Shapiro. Proc. Natl. Acad. Sci. 109, 19575 (2012). D. Manzano, PLoS ONE 8(2), e57041 (2013).

[3] J. Thingna, D. Manzano, and J. Cao. arXiv:1112.2839, (2016).

 

Conferenciante: Daniel Manzano, Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada.

Fecha/Hora: Martes 17 de Mayo de 2016, a las 12:30.

Lugar: Aula de Física Computacional del Departamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias.

gif3

Estudio de las Transiciones de Fase y Fenómenos críticos en el Modelo de Ising con Interacciones Dipolares

Las películas magnéticas delgadas presentan una variedad de patrones a escala mesoscópica, los cuales pueden se controlados mediante parámetros extrínsecos como la temperatura y el campo magnético o intrínsecos como su espesor, las interacciones entre capas atómicas y las propiedades de cada capa. Esta propiedad les ha dado un creciente interés tecnológico y científico, constituyéndose en el objeto de estudio de la comunidad científica tanto desde el punto de vista teórico como experimental. El origen de este fenómeno está relacionado a la competencia entre las interacciones de intercambio y dipolar. En el límite de películas ultradelgadas los momentos magnéticos presentan una fuerte anisotropía perpendicular al plano de la película, lo cual permite que sean modeladas mediante el modelo de Ising ferromagnético con interacciones dipolares antiferromagnéticas. La introducción del término dipolar en el modelo de Ising produce frustración en el sistema rompiendo con el orden ferromagnético y llevando a la formación de fases con magnetización neta cero, tales como, líquido tetragonal, fajas de ancho h, antiferromagnética y nemática.

El diagrama de fases de este modelo ha sido intensivamente estudiado y gran parte del conocimiento acerca del mismo ha sido obtenido mediante simulaciones Monte Carlo. Sin embargo, aún no ha sido completamente definido, principalmente debido a las limitaciones introducidas por el término dipolar en las simulaciones, tales como fuertes efectos de tamaño finito e incrementos en los tiempos de simulación, así como la existencia de múltiples estados metaestables a bajas temperaturas. En particular, existe una controversia acerca del orden de las transiciones entre las fases de baja y alta temperatura.

En este trabajo se ha centrado la atención sobre la línea de transición entre las fases líquido tetragonal y de fajas de ancho h=1, específicamente para 0.5<d<1.2, donde el parámetro d es la razón entre las constantes de acoplamiento y dipolar. Mediante el estudio de la evolución dinámica de los observables físicos en el régimen de tiempos cortos se determinó que corresponde a una línea de transiciones continuas y se caracterizó el comportamiento crítico en función del parámetro d mediante la obtención del conjunto completo de exponentes críticos.

Conferenciante: M. Leticia Rubio Puzzo, Universidad Nacional de La Plata, Argentina

Fecha/Hora: Jueves 21 de abril de 2016, a las 12:30.

Lugar: Aula de Física Computacional del Departamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias.

medium

Modeling the dynamics of large-scale cortical networks with laminar structure

Interactions between visual cortical areas occur in both feedforward and feedback directions along the visual hierarchy, with feedforward interactions carrying signals from sensory areas to higher areas and feedback interactions conveying top-down signals which modulate perception. Several recent works have identified a clear spectral profile: feedforward (bottom up) interactions seem to be associated with oscillations in the gamma band (30-70Hz), while feedback (top down) interactions relate to lower frequencies, in the high alpha or low beta range (8-20 Hz). How these frequency-specific communication channels emerge and shape synchronization across cortical areas remains, however, poorly understood.
In this work, we developed a large-scale computational model of monkey cortex endowed with a laminar structure of cortical areas, to investigate the dynamical mechanism underlying frequency-specific interactions in the visual system. The model spans multiple scales, and each one (local circuit, laminar network, inter-areal interactions, and large-scale cortical network) is anatomically constrained and then tested against electrophysiological observations, which provides novel and valuable insight about their circuit mechanisms. At the large-scale network level, the model is built upon state-of-the-art anatomical connectivity data from the macaque brain. This allows the model to explain observed frequency-dependent functional brain connectivity, its relationship to the underlying structural connectivity, and the emergence of functional hierarchies among visual cortical areas. Our work highlights the importance of multi-scale approaches –with anatomical and physiological constrains at each step –in the construction of large-scale brain models.

Conferenciante: Jorge Mejias, Center for Neural Science, Computational Laboratory of Cortical Dynamics, New York University.

Fecha/Hora: Jueves 14 de abril de 2016, a las 11:00.

Lugar: Aula de Física Computacional del Departamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias.

https://www.ipmc.cnrs.fr/~duprat/neurophysiology/images/network2.jpg