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1. The probability space

• This section contains a brief survey of classical probability theory and stochastic processes. Our aim is
to provide a self-contained and concise presentation of the theory. The material here presented mostly
follows Chapter 1 of Refs. [1] and [2].

• In most occasions, we cannot predict with absolute certainty the outcome of an experiment. This is
because of (a) lack of information on initial conditions (e.g. when many degrees of freedom are involved),
or (b) the underlying physics is intrinsically stochastic (as e.g. in quantum mechanics)

• Examples: number of electrons emitted by a β-radioactive substance in a given time interval, time at
which a bus reaches the station, measure an electron’s spin, toss a coin and look at the appearing side,
or have a look through the window to observe whether it rains or not.

• In general, we have no way (or no effective way) of knowing a priori which one of the possible
outcomes will be observed. Hence, we abandon the deterministic point of view and adopt a probabilistic
description.

• The fundamental concept of probability theory is the probability space. It consists of three basic
ingredients, namely

– A sample space Ω of elementary events

– A σ-algebra of events

– A probability measure on the σ-algebra

We shall follow here the axiomatic approach to probability which is mainly due to Kolmogorov (1956).
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• Examples of sample spaces:

– For the β-radioactive substance, Ω = {0, 1, 2, ...} is the set of natural numbers N
– The hitting times of the projectile or the arrival times of the bus (in some units) both belong to the

set of real numbers Ω = R
– The possible outcomes of a measure of an electron’s spin are Ω = {−~/2, ~/2}
– When tossing a coin, the possible results are Ω = {heads, tails}
– For the rain observation the set of results is Ω = {yes, no}.

1.1. The σ-algebra of events

• We want to associate probabilities to events obtained in some kind of experiment

• Events are subsets of some basic set Ω, the sample space or space of events

• For example, if the experiment is tossing a coin, the sample space is typically the set {h(ead), t(ail)}.
For tossing two coins, the corresponding sample space would be {(h,h), (h,t), (t,h), (t,t)}. An event of
the σ-algebra would be, for instance, ”at least one head”, or {(h,h), (h,t), (t,h)}∈ Ω. Another event
would be ”no more than one head”, i.e. {(h,t), (t,h), (t,t)}∈ Ω

• Another example: For tossing a single six-sided dice, the typical sample space is {1, 2, 3, 4, 5, 6} (in
which the result of interest is the number of pips facing up).

• The subsets of Ω containing just one element ω ∈ Ω are referred to as elementary events

• Usually we are not interested in all possible subsets of Ω. We rather need to specify which kind of
subsets A ⊂ Ω we would like to include in our theory. An important requirement is that the events form
a so-called σ-algebra, which is a system A of subsets of Ω with the following three properties:
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1 The sample space itself and the empty set belong to the system of events, that is Ω ∈ A and ∅ ∈ A.

2 If A1 ∈ A and A2 ∈ A, then also the union A1 ∪ A2 ∈ A, the intersection A1 ∩ A2 ∈ A, and the
difference A1 \ A2 ∈ A belong to the system A.

3 If we have a countable collection of events A1, A2, . . . , An, . . . ∈ A, then also their union ∪∞n=1An

belongs to A.

We shall always write A ∈ A to express that the subset A ⊂ Ω is an event of our theory.

• The above requirements ensure that the total sample space Ω and the empty set ∅ are events, and that
all events of A can be subjected to the logical operations ’AND’ (∩), ’OR’ (∪) and ’NOT’ (\) without
leaving the system of events. This is why A is called an algebra. The third condition is what makes A
a σ-algebra. It tells us that any countable union of events is again an event.

• Example of σ-algebra: Flip a coin three times and count the number of heads. Ω = {0, 1, 2, 3}. Then
A = {∅,Ω, {0, 1, 2}, {3}} is a σ-algebra. Indeed, if any A,B ∈ A, then Ac ∈ A, A ∪ B ∈ A, and so
on.

• Another example of σ-algebra: Flip a coin twice and count the number of heads. Ω = {0, 1, 2}. Then
A = {∅,Ω, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}} is a σ-algebra. Check!

1.2. Probability measures and Kolmogorov axioms

• The construction of the probability space is completed by introducing a probability measure on the
σ-algebra

• A probability measure is simply a map µ : A → R which assigns to each event A ∈ A of the σ-algebra
a real number µ(A)

A→ µ(A) ∈ R (1)
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• The number µ(A) is interpreted as the probability of the event A

• The probability measure µ is thus required to satisfy the following Kolmogorov axioms:

1 For all events A ∈ A we have
0 ≤ µ(A) ≤ 1 (2)

2 Probability is normalized as
µ(Ω) = 1 (3)

3 If we have a countable collection of disjoint events

A1, A2, . . . , An, . . . ∈ A with Ai ∩ Aj = ∅ ∀i 6= j (4)

then the probability of their union is equal to the sum of their probabilities,

µ(∪∞n=1An) =
∞∑
n=1

µ(An) (5)

• On the basis of these axioms one can build up a consistent probability theory. In particular, the
Kolmogorov axioms enable one to determine the probabilities for all events which arise from logical
operations on other events. For example, one finds

µ(A1 ∪ A2) = µ(A1) + µ(A2)− µ(A1 ∩ A2) (6)

• Summary: a probability space consists of a sample space Ω, a σ-algebra A of events, and a probability
measure µ on A.
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1.3. Conditional probabilities and statistical independence

• The concept of statistical independence is often formulated by introducing the conditional probability
µ(A1|A2) of an event A1 ∈ A under the condition that an event A2 ∈ A occurred,

µ(A1|A2) =
µ(A1 ∩ A2)

µ(A2)
(7)

• These events are said to be statistically independent if and only if µ(A1|A2) = µ(A1), or equivalently, iff

µ(A1 ∩ A2) = µ(A1)µ(A2) (8)

• This means that the probability of the mutual occurrence of the events A1 and A2 is just equal to the
product of the probabilities of A1 and A2

• The condition of statistical independence for several events A1, A2, . . . , An, . . . ∈ A is the following: For
any subset (i1, i2, ..., ik) of the set of indices (1, 2, . . . , n) we must have

µ(Ai1 ∩ Ai2 ∩ . . . ∩ Aik) = µ(Ai1)µ(Ai2) . . . µ(Aik) (9)

which means that the joint occurrence of any subset of the events Ai factorizes.

• Important: it is not sufficient to check statistical independence by just considering all possible pairs
Ai, Aj of events

• An immediate consequence of definition (7) of statistical independence is Bayes theorem

µ(A1|A2) = µ(A2|A1)
µ(A1)

µ(A2)
(10)
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Figure 1. Illustration of the definition of a random variable. A random variable x̂ is a map from the sample
space to the set of real numbers. The probability that the random number falls into some Borel set B is
equal to the probability measure µ(A) of the event A = x̂−1(B) given by the pre-image of B.

2. Random variables

• The elements ω of the sample space Ω can be rather abstract objects. In practice one often wishes to
deal with simple numbers (integer, real or complex numbers) instead of these abstract objects.

• For example, one would like to add and multiply these numbers, and also to consider arbitrary functions
of them. The aim is thus to associate numbers with the elements of the sample space. This idea leads
to the concept of a random variable.
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2.1. Definition of random variables

• A random variable x̂ is defined to be a map

x̂ : Ω→ R (11)

which assigns to each elementary event ω ∈ Ω a real number x̂(ω)

• Given some ω ∈ Ω, the value x = x̂(ω) is called a realization of x̂

• To completely define a random variable, we still need to impose a certain condition on the function x̂.
To formulate this condition we introduce the σ-algebra of Borel sets of R which will be denoted by B.

• The σ-algebra of Borel sets of R (B) is the smallest σ-algebra which contains all subsets of the form
(−∞, x), x ∈ R. In particular, it contains all open and closed intervals of the real axis.

• Condition: the function x̂ must be a measurable function. This means that for any Borel set B ∈ B the
pre-image A = x̂−1(B) belongs to the σ-algebra A of events.

• This condition ensures that the probability of x̂−1(B) is well defined and that we can define the
probability distribution of x̂ by means of the formula

Px̂(B) = µ(x̂−1(B)) (12)

• A random variable x̂ thus gives rise to a probability distribution Px̂(B) on the Borel sets B of the real
axis (see Fig. 1)

• Particular Borel sets are the sets (−∞, x] with x ∈ R. Consider the pre-images of these set, that is the
sets

Ax = {ω ∈ Ω|x̂(ω) ≤ x} . (13)



CONTENTS 11

By the condition on the map x̂ these sets are measurable for any x ∈ R. This enables us to introduce
the function

Fx̂(x) ≡ µ(Ax) = µ({ω ∈ Ω|x̂(ω) ≤ x}) . (14)

For a given x this function yields the probability that the random number x̂ takes on a value in the
interval (−∞, x]. The function Fx̂(x) is referred to as the cumulative distribution function (cdf) of x̂.

• The random variable x̂ is said to have a probability density function (pdf) fx̂(x) if the cumulative
distribution function Fx̂(x) can be represented as

Fx̂(x) =

∫ x

−∞
fx̂(x) dx . (15)

Moreover, if Fx̂(x) is absolutely continuous1 we get the formula

fx̂(x) =
dFx̂(x)

dx
(16)

† Definition: Let I be an interval in the real line R . A function f : I → R is absolutely continuous on I if for every
positive number ε, there is a positive number δ such that whenever a finite sequence of pairwise disjoint sub-intervals
(xk, yk) of I with xk, yk ∈ I satisfies

∑
k(yk − xk) < δ, then

∑
k |f(yk)− f(xk)| < ε.

A continuous function fails to be absolutely continuous if it fails to be uniformly continuous, which can happen if the
domain of the function is not compact – examples are tan(x) over [0, π/2), x2 over the entire real line, and sin(1/x)
over (0, 1]. But a continuous function f can fail to be absolutely continuous even on a compact interval. It may not be
”differentiable almost everywhere” (like the Weierstrass function, which is not differentiable anywhere). Or it may be
differentiable almost everywhere and its derivative f ′ may be Lebesgue integrable, but the integral of f ′ differs from the
increment of f (how much f changes over an interval). This happens for example with the Cantor function.
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• The pdf fx̂(x) is one of the most important concepts in the theory of random variables. To be able to
consider fx̂(x) as a bona fide pdf, it must satisfy the nonnegativity and normalization conditions

fx̂(x) ≥ 0 ;

∫ ∞
−∞

fx̂(x) dx = 1 (17)

• The probability that the random variable x̂ takes a value in a finite interval [a, b] is

P (x̂ ∈ [a, b]) =

∫ b

a

fx̂(x) dx . (18)

Indeed, the interpretation of the pdf is that, in the limit dx→ 0, fx̂(x)dx gives the probability that the
random variable x̂ takes values between x and x + dx, i.e.

P (x ≤ x̂ ≤ x + dx) = fx̂(x) dx (19)

In general, the probability that the probability that a random variable x̂ takes a value within an arbitrary
region Γ ⊂ R of the real numbers is

P (x̂ ∈ Γ) =

∫
Γ

fx̂(x) dx (20)

• Dimensions: Note that fx̂(x) has units of the inverse of the units of x, and it is not limited to taking
values smaller than or equal to 1. For instance, the pdf governing the probability of the next emission
of an electron by a β-radioactive substance has units of inverse of time, or t−1.

• Pdf from frequencies: A pdf can be computed from the experimental data. We first generate M data of
the random variable x̂ repeating the experiment M times and recording the outcomes {x1, x2, . . . , xM}.
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We choose an interval ∆x and count the number of times n(x, x + ∆x) in which the random variable
has taken values in the interval (x, x + ∆x). According to the interpretation of fx̂(x), this pdf can be
estimated as

fx̂(x) ≈ n(x, x + ∆x)

∆x
(21)

A good estimate for fx̂(x) requires M to be large and ∆x to be small. An important issue in
probability theory is to be able to conclude whether the observed frequencies are indeed compatible,
within unavoidable statistical errors, with the postulated probabilities.

• According to Eq. (15), the cumulative distribution function (or cdf) Fx̂(x) is nothing but the probability
that the random variable x̂ takes values less or equal than x, i.e.

P (x̂ ≤ x) = Fx̂(x) (22)

Note also that
P (x1 < x̂ ≤ x2) = Fx̂(x2)− Fx̂(x1) (23)

• General properties of the cdf Fx̂(x) which derive from the non-negativity and normalization conditions
for the pdf fx̂(x) are:

Fx̂(x) ≥ 0 (24)

lim
x→−∞

Fx̂(x) = 0 (25)

lim
x→+∞

Fx̂(x) = 1 (26)

x2 > x1 ⇒ Fx̂(x2) ≥ Fx̂(x1) (27)

The last property tells us that Fx̂(x) is a nondecreasing function of its argument.
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• It is possible to treat discrete variables in the language of pdfs if we use the Dirac delta function δ(x) 2.
When the random variable takes a discrete (maybe infinite numerable) set of values x̂ ∈ {x1, x2, x3, . . .}
such that the value xi has probability pi, then the pdf can be considered as a sum of Dirac delta functions

fx̂(x) =
∑
∀i

piδ(x− xi) (28)

because now P (x̂ = xi) = lim∆x→0

∫ xi+∆x

xi−∆x fx̂(x) dx = pi. The corresponding cumulative distribution
function (cdf) is a sum of Heaviside step functions

Fx̂(x) =
∑
∀i

piθ(x− xi) (29)

with the usual definition

θ(x) =

{
0 x < 0 ,
1 x ≥ 0 .

(30)

‡ This mathematical object is not a proper function, but a distribution or generalized function. This is thought of not as
a function itself, but only in relation to how it affects other functions when it is integrated against them. In keeping with
this philosophy, to define the delta function properly, it is enough to say what the integral of the delta function against a
sufficiently good test function is. In this sense the δ-function is a generalized function or distribution on the real number
line that is zero everywhere except at zero, with an integral of one over the entire real line. It can be understood as the
limit of a succession of functions δn(x) such that δn(x) decays to zero outside a region of width 1/n around x = 0 such

that the integral
∫∞
−∞ dx δn(x) = 1. One example is δn(x) = ne−n

2x2/2/
√

2π.
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3. Average values, moments and characteristic function

• First note that arbitrary functions of a random variable are also random variables themselves.

• Indeed, as a random variable x̂ assigns a real number x̂(ξ) to the result of the experiment ξ, it is possible

to use a given real function H(x) to define a new random variable Ĥ as Ĥ(ξ) = H(x̂(ξ)). One defines

the average or expected value E[Ĥ] of this random variable as

E[Ĥ] =

∫ ∞
−∞

fx̂(x)H(x) dx (31)

Alternative, very common notations for the average value are 〈Ĥ〉 or simply E[H ] and 〈H〉.

• For a discrete random variable with pdf given by Eq. (28), the average value is

E[Ĥ] =
∑
∀i

piH(xi) (32)

• Some important expected values are

– Mean or average value of the random variable: E[x̂] = 〈x̂〉
– Moments of order n: E[x̂n] = 〈x̂n〉
– Central moments of order n: E[(x̂− 〈x̂〉)n] = 〈(x̂− 〈x̂〉)n〉
– Variance: σ2[x̂] = E[(x̂− 〈x̂〉)2] = 〈(x̂− 〈x̂〉)2〉
– Standard deviation: σ[x̂]



CONTENTS 16

• The significance of the variance stems from its property to be a measure for the fluctuations of the
random variable x̂, that is, for the extent of deviations of the realizations of x̂ from the mean value 〈x̂〉.
This fact is expressed, for example, by the Chebyshev inequality which states that the variance controls
the probability for such deviations, namely for all ε > 0 we have

Prob(|x̂− 〈x̂〉| > ε) <
1

ε2
σ2[x̂] (33)

In particular, if the variance vanishes then the random number x̂ is, in fact, deterministic, i.e. it takes
on the single value x = 〈x̂〉 with probability 1. The variance plays an important role in the statistical
analysis of experimental data, where it is used, for example, to estimate the standard error of the mean
for a sample of realizations obtained in an experiment.

• For a multivariate random variable x̂ = (x̂1, x̂2, . . . , x̂d) one defines the matrix elements of the covariance
matrix by

cov[x̂i, x̂j] = E[(x̂i − 〈x̂i〉) (x̂j − 〈x̂j〉)] (34)

The d× d matrix with these coefficients is symmetric and positive semidefinite.

• Transformation of random variables: If two random variables ŷ and x̂ are related by a known function
ŷ = g(x̂), then their respective pdfs are also related

fŷ(y) =
∑
m

fx̂(xm)

|dg
dx
|x=xm

(35)

where xm are the solutions of the equation y = g(x). Indeed, since ŷ and x̂ are directly related
by the function g(x), conservation of probability under changes of variables implies that fŷ(y)|dy| =∑

m fx̂(xm)|dx|xm, and from this the above expression immediately follows.
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• Example: if the change is ŷ = x̂2 then the equation y = x2 has no solutions for y < 0 and two solutions
x = +y, x = −y for y ≥ 0,and the pdf for ŷ is

fŷ(y) =

 0 y < 0 ,
fx̂(
√
y) + fx̂(−√y)

2
√
y

y ≥ 0 .
(36)

• Characteristic function: Let us finally introduce a further important expectation value which may serve
to characterize completely a random variable. This is the characteristic function or moment generating
function which is defined as the Fourier transform of the probability density

G(k) = 〈eikx̂〉 =

∫ ∞
−∞

fx̂(x) eikx dx (37)

It can be shown that the characteristic function G(k) uniquely determines the corresponding probability
distribution of x̂.

• Moments of the pdf from the characteristic function: Under the condition that the moments of x̂ exist,
the derivatives of G(k) evaluated at k = 0 yield the moments of x̂

E[x̂n] = 〈x̂n〉 =
1

in
dnG(k)

dkn
|k=0 (38)

This expression immediately follows from the definition of the characteristic function above. This is the
reason why the characteristic function is also known as the moment generating function.
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Figure 2. Cumulative distribution function (cdf) FB̂(x) of the Bernoulli random variable B̂(p).

4. Some Important Probability Distributions

• In this section we review some of the most usual probability distribution functions found in physics and
other branches of science, and summarize their main properties.

4.1. Bernuilli distribution

• It describes a binary experiment in which only two exclusive options are possible: A or Ā (”heads or
tails”, ”either it rains or not”), with respective probabilities p and 1− p, being p ∈ [0, 1].

• We define the discrete Bernuilli random variable B̂(ξ) as taking the value 1 (respectively 0) if the
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experiment yields ξ = A (respectively ξ = Ā). The probabilities are

fB̂(k) =

{
p k = 1 ,
1− p k = 0 .

(39)

• We can write the distribution fB̂ as continuous pdf using Dirac-delta functions

fB̂(x) = pδ(x− 1) + (1− p)δ(x) (40)

• Mean value and variance

E[B̂] =
∑
k=0,1

k fB̂(k) = p , (41)

σ2[B̂] =
∑
k=0,1

(k − p)2 fB̂(k) = p(1− p) . (42)

• When needed below, we will use the notation B̂(p) to denote a random variable that follows a Bernoulli
distribution with parameter p

• The Bernuilli cumulative distribution function now reads

FB̂(x) =

∫ x

−∞
fB̂(y) dy =

 0 x < 0 ,
1− p 0 ≤ x < 1 ,
1 x ≥ 1 .

(43)

This is plotted in Fig. 2.
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4.2. Binomial distribution

• We now repeat M times the binary experiment of the previous case and count how many times A
appears (independently of the order of appearance). This defines a random variable which we call N̂B.
It is a discrete variable that can take any integer value between 0 and M with probabilities

fN̂B
(n) =

(
M

n

)
pn(1− p)M−n (44)

• The random variable N̂B is said to follow a binomial distribution. The mean value and variance are
given by

E[N̂B] = Mp , (45)

σ2[N̂B] = Mp(1− p) . (46)

• For the proof, we use the following properties:

n

(
M

n

)
= n

M !

n!(M − n)!
= M

(M − 1)!

(n− 1)![(M − 1)− (n− 1)]!
= M

(
M − 1

n− 1

)
(47)

M∑
n=0

(
M

n

)
pn(1− p)M−n = 1 . (48)
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Hence, using these properties

E[N̂B] =
M∑
n=0

n

(
M

n

)
pn(1− p)M−n = Mp

M∑
n=1

(
M − 1

n− 1

)
pn−1(1− p)(M−1)−(n−1)

= Mp
M ′∑
n′=0

(
M ′

n′

)
pn
′
(1− p)M

′−n′ = Mp ,

E[N̂2
B] =

M∑
n=0

n2

(
M

n

)
pn(1− p)M−n = Mp

M∑
n=1

n

(
M − 1

n− 1

)
pn−1(1− p)(M−1)−(n−1)

= Mp
M ′∑
n′=0

(n′ + 1)

(
M ′

n′

)
pn
′
(1− p)M

′−n′ = Mp [(M − 1)p + 1] (49)

σ2[N̂B] = E[N̂2
B]− E[N̂B]2 = Mp + M(M − 1)p2 −M 2p2 = Mp(1− p)

• We can also derive the mean and variance from the characteristic function of the binomial pdf

GN̂B
(k) =

M∑
n=0

eiknfN̂B
(n) =

M∑
n=0

(
M

n

)
(eikp)n(1− p)M−n =

[
eikp + 1− p

]M
(50)

Using now Eq. (38) to write the moments of the binomial pdf in terms of the derivatives of its
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characteristic function, we simply find

E[N̂B] =
1

i

dG(k)

dk
|k=0 =

M

i

[
(eikp + 1− p)M−1ipeik

]
k=0

= Mp

E[N̂2
B] =

1

i2
d2G(k)

dk2
|k=0

=
Mp

i

[
ieik(eikp + 1− p)M−1 + (M − 1)(eikp + 1− p)M−2ipei2k

]
k=0

= Mp [1 + (M − 1)p]

σ2[N̂B] = E[N̂2
B]− E[N̂B]2 = Mp + M(M − 1)p2 −M 2p2 = Mp(1− p)

• We will denote by N̂B(p,M) a random variable that follows a binomial distribution with probability p
and number of repetitions M .

4.3. Geometric distribution

• We consider, again, repetitions of the binary experiment, but now the random variable N̂G is defined as
the number of times we must repeat the experiment before the result A appears

• This is a discrete random variable that can take any integer value 0, 1, 2, 3, . . . The probability that it
takes a value equal to n is

fN̂G
(n) = (1− p)np , n = 0, 1, 2, . . . (51)
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• Mean value and variance

E[N̂G] =
1− p
p

, (52)

σ2[N̂G] =
1− p
p2

. (53)

• For the proof, we just need the geometric series result (which yields the normalization of the above pdf)

∞∑
n=0

qn =
1

1− q
, for |q| ≤ 1 (54)

Using this it is simple to show that

〈N̂G〉 =
∞∑
n=1

n (1− p)np = (1− p)
∞∑
n′=0

(n′ + 1) (1− p)n
′
p

= (1− p)(〈N̂G〉 + 1) ⇒ 〈N̂G〉 =
1− p
p

,

〈N̂2
G〉 =

∞∑
n=1

n2 (1− p)np = (1− p)
∞∑
n′=0

(n′ + 1)2 (1− p)n
′
p

= (1− p)(〈N̂2
G〉 + 2〈N̂G〉 + 1) ⇒ 〈N̂2

G〉 =
2− 3p + p2

p2
,

σ2[N̂G] = 〈N̂2
G〉 − 〈N̂G〉2 =

2− 3p + p2 − (1− p)2

p2
=

1− p
p2

.
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Figure 3. Cumulative distribution function (cdf) FÛ(x) of the uniform random variable Û(a, b).

• The characteristic function for the geometric pdf reads

GN̂G
(k) =

M∑
n=0

eiknfN̂G
(n) =

M∑
n=0

[eik(1− p)]np =
p

1− eik(1− p)
. (55)

The above moments can be simply obtained by deriving this expression with respect to k.
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4.4. Uniform distribution

• This is our first example of a continuous random variable. We want to describe an experiment in which
all possible results are real numbers within the interval (a, b) occurring with the same probability, while
no result can appear outside this interval.

• We will use the notation Û(a, b) to indicate a uniform random variable in the interval (a, b). The pdf
is then constant within the interval (a, b) and 0 outside it. Applying the normalization condition, it is
precisely

fÛ(x) =

{
1

b− a x ∈ [a, b] ,

0 x /∈ [a, b] .
(56)

• The cumulative distribution function is

FÛ(x) =

∫ x

−∞
fÛ(y) dy =


0 x < a ,
x− a
b− a a ≤ x < b ,

1 x > b .

(57)

This two functions are plotted in Fig. 3.

• The average and the variance now read

E[Û] =

∫ ∞
−∞

x fÛ(x) dx =
a + b

2
, (58)

σ2[Û] =

∫ ∞
−∞

x2 fÛ(x) dx−
(
a + b

2

)2

=
(b− a)2

12
. (59)
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• Characteristic function for the uniform pdf

GÛ(k) =

∫ ∞
−∞

eikx fÛ(x) dx =
1

b− a

∫ b

a

eikx dx =
i(eika − eikb)

k(b− a)
(60)

• The uniform distribution Û(0, 1) appears in an important result. Let us consider an arbitrary random
variable x̂ (discrete or continuous) whose cdf is Fx̂(x), that we assume invertible, and let us define the

new random variable û = Fx̂(x̂). We will prove now that û = Fx̂(x̂) is a Û(0, 1) variable.

• To prove this result, we study the cdf Fû(u) of the random variable û,

Fû(u) = P (û ≤ u) = P (Fx̂(x) ≤ u) . (61)

First note that Fx̂(x) ∈ [0, 1] as for any cumulative distribution function. This immediately implies
that for u < 0 we have P (Fx̂(x) ≤ u) = 0, while for u > 1 we have P (Fx̂(x) ≤ u) = 1. Now,
for u ∈ [0, 1], the condition Fx̂(x) ≤ u is equivalent to x̂ ≤ F−1

x̂ (u) (recall we assume Fx̂(x) to be
invertible). Therefore

Fû(u) = P (Fx̂(x) ≤ u) = P (x̂ ≤ F−1
x̂ (u)) = Fx̂(F−1

x̂ (u)) = u. (62)

Therefore we have found that

Fû(u) =

 0 u < 0 ,
u 0 ≤ u < 1 ,
1 u > 1 ,

(63)

which is nothing but the cdf of a uniform random variable Û(0, 1).
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4.5. Poisson distribution

• Let us consider the binomial distribution of Subsection 4.2 above in the limit of infinitely many repetitions
M . If we take the double limit M →∞, p→ 0 but keeping Mp→ λ, with λ a finite value, the binomial
distribution N̂B(p,M) tends to the so-called Poisson distribution P̂(λ).

• The form of the Poisson distribution fP̂(n) now follows from Stirling formula1 m! ≈ mme−m
√

2πm
applied to the binomial distribution fN̂B

(n) in Eq. (44). For the binomial coefficient(
M

n

)
=

M !

n!(M − n)!
≈ MMe−M

√
2πM

n!(M − n)M−ne−(M−n)
√

2π(M − n)
=

√
M

M − n
MMe−n

n!(M − n)M−n

† Stirling formula is easily derived from the Gamma function representation of the factorial. Indeed,

n! = Γ(n+ 1) =

∫ ∞
0

xne−x dx =

∫ ∞
0

en lnx−x dx = nen lnn

∫ ∞
0

en(ln y−y) dy.

where we have applied the change of variables y = x/n in the last equality. The last integral can be approximated using
Laplace (or steepest descent) method∫ ∞

0

enf(y) dy ≈ enf(y0)
∫ ∞
0

e−n|f
′′(y0)|(y−y0)2/2 dy ≈

√
2π

n|f ′′(y0)|
enf(y0) as n→∞. (64)

with y0 solution of f ′(y0) = 0. For f(y) = ln y− y (note that then y0 = 1), this yields the desired Stirling approximation

n! ≈ nne−n
√

2πn .
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Using this in the binomial pdf, neglecting subleading terms, and substituting p→ λ/M ,

fN̂B
(n) =

(
M

n

)
pn(1− p)M−n ≈ MMpn(1− p)M−ne−n

n!(M − n)M−n
=
MM( λ

M
)n
(
1− λ

M

)M−n
e−n

n!MM−n
(
1− n

M

)M−n
=
λn
(
1− λ

M

)M−n
e−n

n!
(
1− n

M

)M−n ≈
λn
(
1− λ

M

)M
e−n

n!
(
1− n

M

)M .

Now, as M →∞, we have that (1− x
M

)M → e−x, so finally(
M

n

)
pn(1− p)M−n ≈ λn

n!
e−λ ≡ fP̂(n) , n = 0, 1, 2, . . . ,∞ . (65)

• The Poisson distribution is one of the most important distributions in nature, probably second only to
the Gaussian distribution (to be discussed later).

• Mean value and variance
E[P̂] = σ2[P̂] = λ (66)

The equality of the mean and variance is a typical property characterizing the Poisson distribution.

• Proof:

E[P̂] =
∞∑
n=1

n
λn

n!
e−λ =

∞∑
n′=0

(n′ + 1)
λ

n′ + 1

λn
′

n′!
e−λ = λ

∞∑
n′=0

λn
′

n′!
e−λ = λ , (67)

E[P̂2] =
∞∑
n=1

n2 λ
n

n!
e−λ = λ

∞∑
n′=0

(n′ + 1)
λn
′

n′!
e−λ = λ(E[P̂] + 1) = λ(λ + 1) , (68)

σ2[P̂] = E[P̂2]− E[P̂]2 = λ(λ + 1)− λ2 = λ . (69)
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• Characteristic function for the Poisson distribution

GP̂(k) =
∞∑
n=0

(λeik)n

n!
e−λ = exp[λ(eik − 1)] (70)

• Example: A convenient approximation: We can think of the Poisson distribution simply as a convenient
limit that simplifies the calculations in many occasions. For instance, the probability that a person was
born on a particular day, say 1 January, is p = 1/365, approximately. Then the probability of being
born any other day is 1 − p = 364/365. Imagine that we have now a large group of M = 500 people.
What is the probability that exactly three people were born on 1 January? The correct answer is given
by the binomial distribution by considering the events A={being born on 1 January} with probability
p = 1/365 and Ā={not being born on 1 January} with probability 1− p = 364/365:

P (N̂B = 3) =

(
500

3

)(
1

365

)3(364

365

)497

= 0.108919 . . . (71)

As p is small and M large, it seems justified to use the Poisson approximation. In this case,
λ = pM ≈ 500/365 = 1.37, so we obtain

P (P̂ = 3) = e−1.371.373

3!
= 0.108900 . . . (72)

which yields a reasonably good approximation.

• Example: Exact limit: There are occasions in which the Poisson limit occurs exactly. Imagine we
distribute M dots randomly with a distribution Û[0, T ], uniform in the interval [0, T ]. We will think
immediately of this as events occurring randomly in time with a uniform rate, hence the notation. We
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call ω = M/T the rate (or frequency) at which points are distributed. We now ask the question: what
is the probability that exactly k of the M dots lie in the interval [t1, t1 + t] ∈ [0, T ]?

• The event A={one given dot lies in the interval [t1, t1 + t]} has probability p = t/T , whereas the
event Ā={the given dot does not lie in the interval [t1, t1 +t]} has probability q = 1−p. The required

probability is given by the binomial distribution B̂(p,M) defined in Eq. (44)

• We now make the limit M → ∞, T → ∞ but ω = M/T finite. This limit corresponds to the
Poisson limit of the binomial pdf explained above, where M → ∞, p = t/T → 0 with pM = ωt
finite. Physically, this limit corresponds to the distribution in which the events occur uniformly in
time with a rate (frequency) ω. As mentioned earlier, it can be proven using Stirling’s approximation

that, in this limit, the binomial distribution B̂(p,M) tends to a Poisson distribution P̂(λ) of parameter
λ = pM = ωt, finite.

• Example: β-radiactive decay: Consider N atoms of β-radioactive substance. Each atom emits one
electron independently of the others. The probability that the given atom will disintegrate is constant
with time, and the number of atoms in the substance is so large (of the order of Avogadro’s number)
that the relative change of the number of atoms in the substance during the time interval of interest is
negligible. We hence can assume a constant decay rate ω which can be estimated simply by counting
the number of electrons M emitted in a time interval T as ω = M/T . Under these circumstances,
the number k of electrons emitted in the time interval [t1, t1 + t] follows a Poisson distribution with
parameter λ = pM = tM/T = ωt, or

P (k; t) = e−ωt
(ωt)k

k!
(73)
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4.6. Exponential distribution

• A continuous random variable x̂ follows an exponential distribution if its pdf is

fx̂(x) =

{
0 x < 0 ,
ae−ax x ≥ 0 .

(74)

with a > 0 a parameter.

• The mean value and variance are

E[P̂] =

∫ ∞
0

x ae−ax dx =
Γ(2)

a
=

1

a
, (75)

E[P̂2] =

∫ ∞
0

x2 ae−ax dx =
Γ(3)

a2
=

2

a2
, (76)

σ2[P̂] = E[P̂2]− E[P̂]2 =
2

a2
− 1

a2
=

1

a2
. (77)

• Example: Consider the emission of electrons by a radioactive substance which we know is governed by
the Poisson distribution for those time intervals such that the emission rate can be considered constant.
Let us set our clock at t = 0 and then measure the time t of the first observed emission of an electron.
This time is a random variable t̂ (a number associated with the result of an experiment) and has a pdf
which we call f 1st

t̂
(t). By definition, f 1st

t̂
(t) dt is the probability that the first electron is emitted during

the interval (t, t + dt) and, accordingly, the probability that the first electron is emitted after time t is∫∞
t f 1st

t̂
(t′) dt′. This is equal to the probability that no electrons have been emitted during (0, t), i.e.

P (0; t) = e−ωt, see Eq. (73), that is ∫ ∞
t

f 1st
t̂ (t′) dt′ = e−ωt t ≥ 0 . (78)
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Taking the time derivate on both sides of this equation, we obtain

f 1st
t̂ (t) = ω e−ωt t ≥ 0 . (79)

which is nothing but the exponential distribution. The same exponential pdf rules the distribution of
time intervals between consecutive events in constant rate problems.

• Alternatively, if t̂ follows the previous exponential distribution, then the number of events occurring in
a time interval (0, 1) follows a Poisson P̂(λ) distribution with λ = ω × 1 = ω.
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Figure 4. Pdf and cdf of the Gaussian distribution of mean 0 and variance 1.

4.7. Gaussian distribution

• A continuous random variable x̂ follows a Gaussian distribution of mean µ and variance σ2 if its pdf is

fx̂(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
. (80)

We will use the notation that x̂ is a Ĝ(µ, σ) random variable.

• The average and the variance are, obviously E[x̂] = µ and σ2[x̂] = σ2.

• The cdf is

Fx̂(x) =
1√

2πσ2

∫ x

−∞
e−

(x′−µ)2
2σ2 dx′ =

1

2
+

1

2
erf

(
x− µ√

2σ2

)
(81)

where erf(z) is the error function

erf(z) =
2√
π

∫ z

0

e−y
2

dy (82)
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Fig. 4 displays the Gaussian pdf and cdf.

• Interestingly, the characteristic function of the Gaussian pdf is another Gaussian function

GĜ(k) =
1√

2πσ2

∫ ∞
−∞

eikxe−
(x−µ)2
2σ2 dx =

eikµ−σ2k2/2
√

2πσ2

∫ ∞
−∞

e−
[x−(µ+ikσ2)]2

2σ2 dx = eikµ−σ2k2/2 .

• Gaussian random variables are very important in practice because they appear in a large number of
problems, either as an exact distribution in some limit or, simply, as providing a sufficient approximation
to the real distribution. After all, it is not unusual that many distributions have a maximum value and
this can in many cases be approximated by a Gaussian distribution (the so-called bell-shaped curve).

• One of the reasons for the widespread appearance of Gaussian distributions is the central-limit theorem,
which states that the sum of a large number of independent random variables, whatever their distribution,
will approach a Gaussian distribution. See Section 9 below for a detailed discussion.

• One can prove that the binomial distribution B̂(p,M) tends to the Gaussian distribution Ĝ(Mp,Mp(1−
p)) in the limit M →∞,

fN̂B
(n) =

(
M

n

)
pn(1− p)M−n

M→∞−−−→ 1√
2πMp(1− p)

exp

[
− (n−Mp)2

2Mp(1− p)

]
. (83)

Note however that the mean and the variance of this Gaussian distribution are related, so only a
particular family of Gaussian distribution can be obtained as limits of binomial distributions.

• Normal approximation for the binomial distribution: We now want to prove that B̂(p,M)
M→∞−−−→

Ĝ(Mp,Mp(1−p)). To prove this result, we will assume that, together with M , also Mp and M(1−p)
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are large, which is true always for any fixed p (i.e. not scaling with M) in the limit of large M . To
simplify the formulas below, we now introduce q = 1− p. Using Stirling’s formula

fN̂B
(n) ≈ MMe−M

√
2πM

nne−n
√

2πn(M − n)M−ne−(M−n)
√

2π(M − n)
pnqM−n

=

(
Mp

n

)n( Mq

M − n

)M−n√ M

2πn(M − n)
. (84)

It is convenient now to define the excess variable δ = n −Mp (recall that the binomial distribution
hasmean Mp and variance Mpq), so we have n = δ + Mp and M − n = Mq − δ. Moreover, taking
logarithms and recalling that ln(1 + x) ≈ x− 1

2
x2 + O(x3),

ln

(
Mp

n

)
= ln

(
Mp

Mp + δ

)
= − ln(1 +

δ

Mp
) ≈ − δ

Mp
+

δ2

2M 2p2
,

ln

(
Mq

M − n

)
= ln

(
Mq

Mq − δ

)
= − ln(1− δ

Mq
) ≈ δ

Mq
+

δ2

2M 2q2
,

In this way

ln

[(
Mp

n

)n( Mq

M − n

)M−n]
= (Mp + δ) ln

(
Mp

Mp + δ

)
+ (Mq − δ) ln

(
Mq

Mq − δ

)
≈ (Mp + δ)

(
− δ

Mp
+

δ2

2M 2p2

)
+ (Mq − δ)

(
δ

Mq
+

δ2

2M 2q2

)
≈ − δ2

2Mpq
+ O

(
− δ3

M 2

)
.

Exponentiating the above result, we thus find(
Mp

n

)n( Mq

M − n

)M−n
≈ e−

δ2

2Mpq

[
1 + O

(
δ3

M 2

)]
(85)
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For the square root factor in Eq. (84), we also have√
M

2πn(M − n)
=

√
M

2π(Mp + δ)(Mq − δ)
≈
√

1

2πMpq

[
1 + O

(
δ

M

)]
(86)

To end this calculation, note that we want to approximate the binomial distribution in the region where
it is appreciably distinct from 0, i.e. we want n to be close to the average Mp, or in other words no
more than a few standard deviations σ from the average. As σ =

√
Mpq ∼ O(

√
M), then we will have

δ = n−Mp ∼ O(
√
M), and this implies that the corrections

O

(
δ3

M 2

)
∼ O

(
δ

M

)
∼ O

(
1√
M

)
M→∞−−−→ 0 (87)

Therefore, as stated above,

fN̂B
(n) =

(
M

n

)
pn(1− p)M−n

M→∞−−−→ 1√
2πMp(1− p)

exp

[
− (n−Mp)2

2Mp(1− p)

]
. (88)

• As one could easily expect, the Gaussian distribution can also be obtained as the limit of the Poisson
distribution for large parameter λ → ∞. This yields a particular Gaussian distribution of the same
mean and variance, or Ĝ(λ, λ). Again, although the exact result refers to the limit λ→∞, in practice
the approximation can be considered sufficient for λ ≥ 100, especially around the maximum of the
distribution (Figure 5).

• To see this result, we write

fP̂(n) =
λn

n!
e−λ

Stirling
≈

(
λ

n

)n e−λ+n

√
2πn

=

(
λ

λ + δ

)λ+δ eδ√
2π(λ + δ)
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Figure 5. (a) Binomial distribution (dots) and its Gaussian approximation (solid line). (b) Poisson
distribution (dots) and its binomial approximation (solid line).

where we have defined as above the excess variable δ = n− λ. Using now that

ln

(
λ

λ + δ

)λ+δ

= (λ + δ) ln

(
λ

λ + δ

)
≈ −δ − δ2

2λ
, (89)

and exponentiating the previous result, we obtain to first order

fP̂(n) =
λn

n!
e−λ

λ→∞−−−→ 1√
2πλ

e−
δ2

2λ =
1√
2πλ

e−
(n−λ)2

2λ (90)
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5. Multivariate random variables

• Sometimes it is possible (and useful) to assign more that one random variable to the result of an
experiment.

• For example, we can measure in a β-radioactive sample the time t and the speed v at which an electron
is emitted; we can measure the time of arrival of the bus and the number of people in the waiting queue;
we can observe whether it rains or not and measure the air temperature and pressure, and so on.

• In general, given an experiment, let us consider N random variables assigned to it: (x̂1, . . . , x̂N). The
joint pdf of all these random variables is a function of N real variables fx̂1,...,x̂N (x1, . . . , xN), which allows
us to compute the probability that the vector of results (x̂1, . . . , x̂N) belongs to a region Ω ∈ RN as

P ((x̂1, . . . , x̂N) ∈ Ω) =

∫
Ω

fx̂1,...,x̂N (x1, . . . , xN) dx1 . . . dxN (91)

• In other words, fx̂1,...,x̂N (x1, . . . , xN) dx1 . . . dxN is the probability that in a measurement of the N
random variables the value of x̂1 lies in (x1, x1 + dx1), the value of x̂2 lies in (x2, x2 + dx2), and so on.

• The cumulative distribution function (cdf) is defined as

Fx̂1,...,x̂N (x1, . . . , xN) =

∫ x1

−∞
dx′1

∫ x2

−∞
dx′2 . . .

∫ xN

−∞
dx′N fx̂1,...,x̂N (x′1, x

′
2, . . . , x

′
N) (92)

• Statistical independence: N random variables x̂1, . . . , x̂N are defined to be statistically independent if
the joint pdf factorizes as the product of pdfs for each variable, that is

fx̂1,...,x̂N (x1, . . . , xN) = fx̂1
(x1) fx̂2

(x2) . . . fx̂N (xN) (93)
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• The mean value of a function of N variables G(x1, ..., xN) is computed as

〈G(x1, ..., xN)〉 =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxN G(x1, ..., xN) fx̂1,...,x̂N (x1, . . . , xN) (94)

• In particular, if G(x1, ..., xN) = λ1G1(x1) + . . . + λNGN(xN), then

〈G(x1, ..., xN)〉 =
N∑
i=1

λi〈Gi(xi)〉 (95)

and if the random variables x̂1, . . . , x̂N are independent of each other, then

σ2 [G(x1, ..., xN)] =
N∑
i=1

λ2
iσ

2 [Gi(xi)] (96)

• The covariance between two of the random variables x̂i, x̂j is defined as

C[x̂i, x̂j] = Cij = 〈(x̂i − 〈x̂i〉)(x̂j − 〈x̂j〉)〉 = 〈x̂ix̂j〉 − 〈x̂i〉〈x̂j〉 (97)

Trivially, the covariance matrix is symmetrical, Cij = Cji. If the variables x̂i, x̂j are statistically
independent, then it is easy to verify that Cij is also diagonal, i.e.

Cij = σ2[x̂i]δij (98)

where δij is the Kronecker delta symbol. Note that the reverse statement (”if Cij = σ2[x̂i]δij then
variables x̂i, x̂j are statistically independent”) need not be true.
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• In general, the variance of the sum of two functions G1(x), G2(x)

σ2[G1 + G2] = 〈(G1 + G2)
2〉 − 〈G1 + G2〉2 , (99)

can be written as
σ2[G1 + G2] = σ2[G1] + σ2[G2] + 2C[G1, G2] (100)

where C[G1, G2] is the covariance of G1 and G2.

• The correlation coefficient ρ[x̂i, x̂j] of the random variables x̂i, x̂j is defined as a suitable normalization
of the covariance

ρ[x̂i, x̂j] =
C[x̂i, x̂j]

σ[x̂i]σ[x̂j]
(101)

From the definition, it follows that |ρ[x̂i, x̂j]| ≤ 1.

• Marginal distribution functions: Even if there are N random variables (x̂1, . . . , x̂N) defined in an
experiment, we can still ”forget” about some of them and consider the pdfs of only a subset of variables,
for instance, fx̂1

(x1) or fx̂2x̂4
(x2, x4). These are called, in this context, marginal distribution functions

and can be obtained by integrating out the variables that are not of interest. For example:

fx̂1
(x1) =

∫ ∞
−∞

dx2 fx̂1x̂2
(x1, x2) , (102)

or

fx̂2x̂4
(x2, x4) =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx3 fx̂1x̂2x̂3x̂4
(x1, x2, x3, x4) , (103)
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6. Interpretation of the variance, statistical errors, and Chebyshev’s theorem

• Let us consider a random variable x̂ assigned to an experiment. In general, every time we execute an
experiment and obtain a result ξ, we do not know a priori which numerical value, x̂(ξ), will the random
variable take (unless there exists an event with probability 1). That is why it is called a random variable.

• Imagine we do know the average value µ = E[x̂] and the variance σ2 = E[x̂2] − E[x̂]2. Maybe this
knowledge comes from some theory that provides us with the values of µ and σ2. What can we say
about a single outcome x̂(ξ) of the random variable? Not much in general.

• However we can say something about the probability of x̂(ξ) taking values far away from µ, the mean
value. Intuitively, we expect that it is unlikely to obtain values very far away from µ. But how unlikely?

• Chebyshev’s theorem quantifies this probability as

P (|x̂(ξ)− µ| ≥ kσ) ≤ 1

k2
. (104)

for an arbitrary k ≥ 1. In words, the probability that a single measurement x̂(ξ) of a random variable
differs from the mean value µ by an amount larger than k times the standard deviation σ is smaller
than 1/k2.

• Proof of Chebyshev’s inequality: Let x̂ be a random variable with pdf fx̂(x), with average µ and variance
σ2, and let a ∈ R+ be a positive number. Then

〈x̂2〉 =

∫ ∞
−∞

x2fx̂(x) dx ≥
∫
|x|≥a

x2fx̂(x) dx ≥ a2

∫
|x|≥a

fx̂(x) dx = a2Prob(|x̂| ≥ a) . (105)
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or equivalently

Prob(|x̂| ≥ a) ≤ 1

a2
〈x̂2〉 . (106)

Applying this theorem to the random variable ŷ = x̂− µ, with zero average and the same variance σ2,
we obtain P (|x̂(ξ)− µ| ≥ a) ≤ σ2

a2
, and taking the arbitrary constant a = kσ, we hence arrive at

P (|x̂(ξ)− µ| ≥ kσ) ≤ 1

k2
. (107)

• This result can be written with the equivalent expression

P (|x̂(ξ)− µ| ≤ kσ) ≥ 1− 1

k2
. (108)

• Meaning: For instance, if k = 3, it is less than 1/32 ≈ 11% probable that the result of a single
experiment lies outside the interval (µ− 3σ, µ + 3σ). In other words, we cannot predict the result of a
single experiment but we can affirm with an 11% confidence (about 89 out of every 100 times we make
the experiment) that it will lie in the interval (µ − 3σ, µ + 3σ). Of course, if σ is a large number, this
prediction might be useless, but the reverse is also true, that is, if σ is small, then we can be pretty sure
of the result.

• Example: Imagine that the experiment is to measure the radius of one polystyrene bead taken at random
from a large number we bought from a manufacturer who tells us that the average radius of the set is
µ = 3.5 mm and the standard deviation is σ = 1.0 µm. How confident can we be that the radius of
that particular bead lies in the interval (3.49, 3.51) mm? To apply Chebyshev’s inequality to this data,
we need to take (3.49, 3.51) = (µ− kσ, µ + kσ) or 0.01mm = k × 1µm or k = 10.This means that, on
average, 1 out of k2 = 100 beads will not have a radius within these limits (or, from the positive side,
99 out of 100 beads will have a radius within these limits).
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• This interpretation of Chebyshev’s theorem allows us to identify (in the precise manner defined before)
the standard deviation of a distribution with the error (i.e. the uncertainty) in a single measurement of
a random variable.

• Once we have understood this, we should understand the expression

x̂(ξ) = µ± σ (109)

with µ = E[x̂] and σ2 = E[x̂2]−E[x̂]2 as a short-hand notation of the exact statement of Chebyshev’s
theorem (104). It does not mean that experimental values x̂(ξ) that differ from µ by an amount greater
than σ cannot appear, or are forbidden; it simply means that they are unlikely. How unlikely? Exactly
by 1/k2, with k = |x̂(ξ)− µ|/σ.

• Chebyshev’s theorem is very general. It applies to any random variable whatever its pdf.

• In the case of a Gaussian distribution, we have the more precise result

P (|x̂(ξ)− µ| ≤ kσ) =
1√

2πσ2

∫ µ+kσ

µ−kσ
e−

(x−µ)2
2σ2 dx = erf

(
k√
2

)
> 1− 1

k2
, (110)

where we recall that the error function is defined as

erf(z) =
2√
π

∫ z

0

e−y
2

dy, . (111)

The previous probabilities take the following values for the Gaussian pdf

P (|x̂(ξ)− µ| ≤ σ) = 0.68269 . . . , (112)

P (|x̂(ξ)− µ| ≤ 2σ) = 0.95450 . . . , (113)

P (|x̂(ξ)− µ| ≤ 3σ) = 0.99736 . . . , (114)
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which means that we can be certain with a 68% probability that the result of the measurement will lie
in the interval (µ− σ, µ+ σ); with a 95% probability that the result of the measurement will lie in the
interval (µ − 2σ, µ + 2σ); and with a 99.7% probability that the result of the measurement will lie in
the interval (µ− 3σ, µ + 3σ). Note that, if we take σ as the error of the measurement, in 32% (nearly
1/3) of the cases the observed value x̂(ξ) will lie outside the error interval.

• In most cases, one does not know the distribution function of the experiment, neither the mean µ nor
the standard deviation σ. Chebyshev’s theorem can be read in the inverse sense

µ = x̂(ξ)± σ . (115)

Given the result of a single measurement x̂(ξ), this allows us to predict the value of µ within a certain
interval of confidence which depends on the generally unknown standard deviation σ.

• However, it is clear that we cannot use this single measurement to obtain information about σ (which
is ultimately related to the dispersion in a set of measurements). To obtain estimates for both µ and σ,
we have to repeat the experiment n times, each one independent of the others, and use some properties
of the sum of random variables.
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7. Sum of random variables

• Let x̂1, . . . , x̂n be independent random variables, all of them described by the same pdf fx̂(x) with
mean µ and variance σ2. The natural idea is to consider them as independent repetitions of the same
experiment. Associated with the result Ξ = (ξ1, ξ2, . . . , ξn), we define the sample mean Ŝn and the
sample variance σ̂2

n as

Ŝn =
1

n

n∑
i=1

x̂i(ξ) , (116)

σ̂2
n =

1

n− 1

n∑
i=1

(
x̂i(ξ)− Ŝn

)2

,

=
n

n− 1

1

n

n∑
i=1

x̂i(ξ)2 −
(

1

n

n∑
i=1

x̂i(ξ)

)2
 . (117)

The notation stresses the fact that both random variables depend on the number of repetitions n.

• It is easy to obtain the average of these two sample random variables1 as

E[Ŝn] = E[x̂i] = µ , (118)

E[σ̂2
n] = σ2 . (119)

Furthermore, the variance of the sample mean is given by

σ2[Ŝn] = E[Ŝ2
n]− E[Ŝn]

2 =
σ2

n
. (120)

† The presence of the factor n− 1 in Eq. (117) avoids its presence in Eq. (119).
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• If we now repeat the experiment n times and obtain a value for Ŝn(Ξ), we can use Chebyshev’s theorem

in its inverse short-hand notation (115) applied to the random variable Ŝn to write µ = Ŝn ± σ[Ŝn], or
using Eq (120)

µ = Ŝn(Ξ)± σ√
n
. (121)

• Still, we do not know the true value of σ on the right-hand side of this equation. It seems intuitive,
though, given Eq. (119), that we can replace it by the sample variance σ ≈ σ̂n, leading to the final
result

µ = Ŝn(Ξ)± σ̂n(Ξ)√
n

. (122)

which yields an estimate of the average value together with its error. As discussed before, this error has
to be interpreted in the statistical sense.

• As the sum of n independent random variables tends to a Gaussian distribution as n increases, see
Section 9 on the Central Limit Theorem below, we can take the Gaussian confidence limits and conclude
that in 68% of the cases the true value of µ will lie in the interval (Ŝn(Ξ)− σ̂n(Ξ)√

n
, Ŝn(Ξ) + σ̂n(Ξ)√

n
), and so

on.
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8. Law of large numbers

• The law of large numbers is a theorem that describes the result of performing the same experiment a
large number of times. According to the law, the sample mean obtained from a large number of trials
should be close to the expected value, and will tend to become closer as more trials are performed.

• The law of large numbers is important because it ”guarantees” stable long-term results for the averages
of some random events. For example, while a casino may lose money in a single spin of the roulette
wheel, its earnings will tend towards a predictable percentage over a large number of spins.

• Weak law of large numbers: Let x1, x2, . . . be an infinite sequence of i.i.d. Lebesgue integrable random
variables with expected value 〈xi〉 = µ ∀i. The weak law of large numbers (also called Khintchine’s law)
states that the sample average converges in probability towards the expected value

Sn =
1

n

n∑
i=1

xi
n→∞−−−→ µ (123)

This means in particular that, for any positive number ε,

lim
n→∞

Prob(|Sn − µ| > ε) = 0 . (124)

• Interpreting this result, the weak law essentially states that for any nonzero margin specified, no matter
how small, with a sufficiently large sample there will be a very high probability that the average of the
observations will be close to the expected value; that is, within the margin.

• Convergence in probability is also called weak convergence of random variables. This version is called the
weak law because random variables may converge weakly (in probability) as above without converging
strongly (almost surely). Strong convergence means that Prob(limn→∞ Sn = µ) = 1.
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• The strong law implies the weak law but not vice versa: When the strong law conditions hold the variable
converges both strongly (almost surely) and weakly (in probability). However the weak law may hold in
conditions where the strong law does not hold and then the convergence is only weak (in probability).

• An assumption of finite variance σ2[x1] = σ2[x2] = . . . = σ2 < ∞ is not necessary. Large or infinite
variance will make the convergence slower, but the law of large numbers holds anyway. This assumption
is often used because it makes the proofs easier and shorter.

• Proof of the weak law of large numbers: We consider a sequence x1, x2, . . . of i.i.d. random variables with
common pdf fx̂(x) with mean value µ and variance σ2, and take the sample average Sn = n−1

∑n
i=1 xi.

We now apply Chebyshev’s inequality to the random variable Sn−µ. Its expected value is E[Sn−µ] = 0
and its variance is Var[Sn − µ] = σ2/n, see central limit theorem below. Then Chebyshev’s inequality
implies that, for every ε > 0,

Prob(|Sn − µ| ≥ ε) ≤ 1

ε2
Var(Sn − µ) =

1

ε2

σ2

n
. (125)

Thus, for every ε > 0, as n→∞ we find

Prob(|1
n

n∑
i=1

xi − µ| ≥ ε)
n→∞
= 0 (126)

• The law of large numbers can be also proven is simple terms using characteristic functions. The proof
is morally equivalent to that of the central limit theorem below.
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Figure 6. Diffusion and the law of large numbers

• Diffusion is an example of the law of large numbers, applied to chemistry. Initially, there are solute
molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed,
and the solute diffuses to fill the whole container. Top: With a single molecule, the motion appears
to be quite random. Middle: With more molecules, there is clearly a trend where the solute fills the
container more and more uniformly, but there are also random fluctuations. Bottom: With an enormous
number of solute molecules (too many to see), the randomness is essentially gone: The solute appears to
move smoothly and systematically from high-concentration areas to low-concentration areas. In realistic
situations, chemists can describe diffusion as a deterministic macroscopic phenomenon (see Fick’s laws,
∂tρ = ∇ · [D(ρ)∇ρ]), despite its underlying random nature.
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9. Central limit theorem

• The central limit theorem (CLT) establishes that, for the most commonly studied scenarios, when
independent random variables are added, their sum tends toward a normal distribution (commonly
known as a bell curve) even if the original variables themselves are not normally distributed.

• In more precise terms, given certain conditions, the arithmetic mean of a sufficiently large number of
iterates of independent random variables, each with a well-defined (finite) expected value and finite
variance, will be approximately normally distributed, regardless of the underlying distribution.

• The theorem is a key concept in probability theory because it implies that probabilistic and statistical
methods that work for normal distributions can be applicable to many problems involving other types
of distributions.

• Central limit theorem: Let {x1, ..., xn} be a random sample of size n –that is, a sequence of n independent
and identically distributed (i.i.d.) random variables drawn from an arbitrary distribution fx̂(x) of
expected value given by µ and finite variance given by σ2, and consider the sample average

Sn =
1

n

n∑
i=1

xi (127)

Then, in the limit of large n, the pdf of the sample average Sn converges to a Gaussian (or normal)
distribution of mean µ and variance σ2/n, i.e.

fŜn(Sn)
n→∞
=

1√
2πσ2/n

exp

[
−(Sn − µ)2

2σ2/n

]
(128)
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• Proof: For a theorem of such fundamental importance to statistics and applied probability, the central
limit theorem has a remarkably simple proof using characteristic functions. As stated above, suppose
{x1, ..., xn} to be a sequence of independent and identically distributed (i.i.d.) random variables drawn
from an arbitrary distribution fx̂(x) of average µ and finite variance σ2. To make the algebra simpler,
consider now the excess sample average,

Zn = Sn − µ =
1

n

n∑
i=1

(xi − µ) ≡ 1

n

n∑
i=1

yi (129)

where we have defined the new random variable ŷ = x̂−µ, whose distribution fŷ(y) –of zero mean and
variance σ2– simply follows from fx̂(x) via conservation of probability. The pdf for Zn can be simply
written as

fẐn(Zn) =

∫ ∞
−∞

dy1 . . .

∫ ∞
−∞

dyn fŷ1,...,ŷn(y1, . . . , yN) δ

[
Zn −

1

n

n∑
i=1

yi

]

=

∫ ∞
−∞

dy1 . . .

∫ ∞
−∞

dyn

n∏
i=1

fŷi(yi) δ

[
Zn −

1

n

n∑
i=1

yi

]
,

where the Dirac delta-function restricts the integrals to those n-tuples (y1, . . . , yn) whose sum is nZn.
Note also that we have used the statistical independence of the different random variables in the second
equality to write fŷ1,...,ŷn(y1, . . . , yN) =

∏n
i=1 fŷi(yi).

Working with a global constraint as the one imposed by the Dirac delta-function above is typically
difficult, and taking now the characteristic function makes the problem considerably simpler by
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eliminating the δ-function in favor of the exponential of the sum of random variables1. In particular,

GẐn
(k) =

∫ ∞
−∞

eikZn fẐn(Zn) dZn =

∫ ∞
−∞

dy1 . . .

∫ ∞
−∞

dyn ei kn
∑n

l=1 yl

n∏
j=1

fŷj(yj)

=

[∫ ∞
−∞

ei kny fŷ(y) dy

]n
=

[
Gŷ

(
k

n

)]n
.

For a fixed value of k (not scaling with n), we have that k
n
→ 0 as n → ∞, so for pdf’s with a finite

variance we can always expand the characteristic function to first (non-zero) order as Gŷ

(
k
n

)
≈ 1− k2

2n2
σ2,

where we have used that G′ŷ(0) = iµ = 0 and G′′ŷ(0) = i2〈ŷ2〉 = −σ2. Therefore, using that

limn→∞
(
1− x

n

)n
= e−x, we find

GẐn
(k) =

[
Gŷ

(
k

n

)]n
≈
[
1− 1

n

k2

2n
σ2

]n
n→∞−−−→ e−

σ2k2

2n , (130)

which is nothing but the characteristic function associated to a Gaussian pdf with zero mean and variance
σ2/n. Therefore

fẐn(Zn)
n→∞
=

1√
2πσ2/n

e
− Z2n

2σ2/n ⇒ fŜn(Sn)
n→∞
=

1√
2πσ2/n

e
− (Sn−µ)2

2σ2/n , (131)

where we have reversed the initial change of variables, Sn = Zn + µ.

† This is a perfect example of the utility and convenience of using the characteristic function to solve a number of
problems in statistics and probability.
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9.1. Some examples and applications of the central limit theorem

• Since real-world quantities are often the balanced sum of many unobserved random events, the central
limit theorem also provides a partial explanation for the prevalence of the normal probability distribution.
It also justifies the approximation of large-sample statistics to the normal distribution in controlled
experiments.

• A simple example is shown in Fig. 7, where the pdf of the sample mean of random 0s and 1s drawn
from a binomial distribution is shown for different n’s.

• A real-world example concerns the probability distribution for total distance covered in a random walk
(biased or unbiased), which will tend toward a normal distribution.

• Flipping a large number of coins will result in a normal distribution for the total number of heads (or
equivalently total number of tails). Indeed, if we assign a 1 for each head obtained, and a 0 for each tail,
the the sum of this random variable will correspond to the total number of heads obtained, and hence
its pdf according to the central limit theorem will obey a normal law.

• The central limit theorem explains the common appearance of the ”Bell Curve” in density estimates
applied to real world data. In cases like electronic noise, examination grades, and so on, we can often
regard a single measured value as the weighted average of a large number of small effects. Using
generalizations of the central limit theorem, we can then see that this would often (though not always)
produce a final distribution that is approximately normal.

• Galton box, bean machine or quincunx: Invented by Sir Francis Galton to demonstrate the Central
Limit Theorem, the machine consists of a vertical board with interleaved rows of pins. Balls are dropped
from the top, and bounce either left or right as they hit the pins. Eventually, they are collected into
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Figure 7. Pdf of the sample mean Sn for random variables drawn from the Bernuilli distribution. In
particular, random 0s and 1s were generated, and then their means calculated for sample sizes ranging from
n = 1 to n = 512. Note that as the sample size increases the tails become thinner and the distribution
becomes more concentrated around the mean.
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Figure 8. Left: The bean machine, as drawn by Sir Francis Galton. Right: A working replica of the machine
(following a slightly modified design)

one-ball-wide bins at the bottom. The height of ball columns accumulated in the bins will eventually
approximate a bell curve.

• Noise cancellation1: Suppose that a man is driving through the desert, and runs out of gas. He grabs
his cellphone to make a call for help, dialing 911, but he is just at the edge of the broadcast range for
his cellphone, and so his call to the 911 dispatcher is somewhat noisy and garbled. Suppose that the
911 dispatcher has the ability to use several cellphone towers to clean up the signal. Suppose that there
are about 100 towers near to the stranded driver, and suppose that the signals they each receive at a
particular instant in time is given by X1, . . . , X100, where Xi = S + ξi, where S is the true signal being
sent to the towers, and where ξi is the noise of each signal. Suppose that all the noises ξ1, . . . , ξ100 are
independent and identically distributed, and further suppose they all have mean 0 and variance σ2. The

† Example taken from Ernie Croot’s lecture notes at Georgia Tech
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911 dispatcher cleans up the signal by computing the average

X̄ =
1

100

100∑
i=1

Xi = S +
1

100

100∑
i=1

ξi . (132)

Now, by the Central Limit Theorem, we would expect that 1
100

∑100
i=1 ξi is distributed according to

N(0, σ2/n), i.e. a normal, Gaussian function of mean 0 and variance σ2/100. This yields 100-fold
improvement in the noise variance gotten just using one tower! And hence the name noise cancellation.
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10. Conditional probabilities

• For the sake of simplicity, we will consider the case of two random variables x̂ and ŷ, but similar ideas
can be easily generalized in the case of more random variables.

• The joint probability density fx̂ŷ(x, y) is defined such that the probability that a measurement of the
random variable x̂ and the random variable ŷ gives for each one of them a value in the interval (x, x+dx)
and (y, y + dy), respectively, is

P (x < x̂ ≤ x + dx, y < ŷ ≤ y + dy) = fx̂ŷ(x, y) dx dy (133)

• The cumulative distribution function

Fx̂ŷ(x, y) =

∫ x

−∞

∫ y

−∞
fx̂ŷ(q, p) dq dp (134)

is such that

P (x1 < x̂ ≤ x2, y1 < ŷ ≤ y2) = Fx̂ŷ(x2, y2)− Fx̂ŷ(x1, y2)− Fx̂ŷ(x2, y1) + Fx̂ŷ(x1, y1) (135)

• Some results follow straightforwardly from the definition:

∂Fx̂ŷ(x, y)

∂x
=

∫ y

−∞
fx̂ŷ(x, p) dp , (136)

∂Fx̂ŷ(x, y)

∂y
=

∫ x

−∞
fx̂ŷ(q, y) dq , (137)

∂2Fx̂ŷ(x, y)

∂x∂y
= fx̂ŷ(x, y) . (138)
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• The marginal probabilities are

fx̂(x) =

∫ ∞
−∞

fx̂ŷ(x, y) dy , (139)

fŷ(y) =

∫ ∞
−∞

fx̂ŷ(x, y) dx , (140)

• Let us recall the definition of conditional probability. For any two events A and B such that P (B) 6= 0,
the conditional probability of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
(141)

• This suggests the definition of the conditional cumulative distribution function

Fŷ(y|B) = P (ŷ ≤ y|B) =
P (ŷ ≤ y,B)

P (B)
, (142)

and the conditional density function

fŷ(y|B) =
∂Fŷ(y|B)

∂y
. (143)

• In the particular case of the event B = {x̂ ≤ x}, we have

Fŷ(y|x̂ ≤ x) =
P (ŷ ≤ y, x̂ ≤ x)

P (x̂ ≤ x)
=
Fx̂ŷ(x, y)

Fx̂(x)
, (144)
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and the pdf can be written as

fŷ(y, x̂ ≤ x) =
∂Fŷ(y|x̂ ≤ x)

∂y
=
∂Fx̂ŷ(x, y)/∂y

Fx̂(x)
=

∫ x

−∞
fx̂ŷ(q, y) dq∫ ∞

−∞

∫ x

−∞
fx̂ŷ(q, y) dq dy

(145)

• If we now take B = {x1 < x̂ ≤ x2}, we get

Fŷ(y|x1 < x̂ ≤ x2) =
P (x1 < x̂ ≤ x2, ŷ ≤ y)

P (x1 < x̂ ≤ x2)
=
Fx̂ŷ(x2, y)− Fx̂ŷ(x1, y)

Fx̂(x2)− Fx̂(x1)
(146)

and the pdf

fŷ(y, x1 < x̂ ≤ x2) =

∫ x2

x1

fx̂ŷ(x, y) dx∫ x2

x1

fx̂(x) dx
(147)

• Let us consider, finally, the set B = {x̂ = x} as the limit x1 → x2 of the previous case. Consequently,
we define

Fŷ(y|x̂ = x) = lim
∆x→0

Fŷ(y|x < x̂ ≤ x + ∆x) . (148)

From Eq. (146), we obtain

Fŷ(y|x̂ = x) = lim
∆x→0

Fx̂ŷ(x + ∆x, y)− Fx̂ŷ(x, y)

Fx̂(x + ∆x)− Fx̂(x)
=
∂Fx̂ŷ(x, y)/∂x

∂Fx̂(x)/∂x
, (149)
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which can be expressed as

Fŷ(y|x̂ = x) =

∫ y

−∞
fx̂ŷ(x, p) dp

fx̂(x)
. (150)

By takin derivative with respect to x, we obtain the conditional pdf

fŷ(y|x̂ = x) =
fx̂ŷ(x, y)

fx̂(x)
=

fx̂ŷ(x, y)∫ ∞
−∞

fx̂ŷ(x, y) dy
. (151)

Moreover, exchanging the role of x and y, we obtain

Fx̂(x|ŷ = y) =

∫ x

−∞
fx̂ŷ(q, y) dq

fŷ(y)
, (152)

and

fx̂(x|ŷ = y) =
fx̂ŷ(x, y)

fŷ(y)
=

fx̂ŷ(x, y)∫ ∞
−∞

fx̂ŷ(x, y) dx
. (153)

• For the sake of simplicity, and if no confusion can arise, we will shorten the notation of the four last
defined functions to Fŷ(y|x), fŷ(y|x), Fx̂(x|y), and fx̂(x|y).

• By Bayes theorem, if A and B are events and B1, B2, . . . is a partition of B, that is B = ∪iBi and
Bi ∩Bj = ∅ ∀i 6= j, then

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

(154)
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We now rephrase an equivalent Bayes theorem in terms of pdf’. It follows from Eqs. (151) and (153)
that

fx̂ŷ(x, y) = fŷ(y|x̂ = x) fx̂(x) , (155)

fx̂ŷ(x, y) = fx̂(x|ŷ = y) fŷ(y) , (156)

(157)

and therefore

fŷ(y|x̂ = x) =
fx̂(x|ŷ = y) fŷ(y)

fx̂(x)
. (158)

We now use Eqs. (139) and (156) to derive

fx̂(x) =

∫ ∞
−∞

fx̂(x|ŷ = y) fŷ(y) dy (159)

which when replaced in the denominator of Eq. (158) yields

fŷ(y|x̂ = x) =
fx̂(x|ŷ = y) fŷ(y)∫∞

−∞ fx̂(x|ŷ = y) fŷ(y) dy
(160)

which is a version of Bayes theorem in terms of pdf’s.
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11. Markov chains

• It is not difficult to generalize these concepts of joint probabilities to more than two random variables.
For example, the pdf of n random variables x̂1, . . . , x̂n can be written in terms of conditional probabilities
as

fx̂1,...,x̂n(x1, . . . , xn) = fx̂1
(x1) fx̂2

(x2|x1) fx̂3
(x3|x1, x2) . . . fx̂n(xn|x1, . . . , xn−1) (161)

• This complicated expression adopts a much simpler form for a particular kind of random variables. A
succession of random variables x̂1, . . . , x̂n is called a Markov chain if for any value of m = 1, . . . , n it
fulfills

fx̂m(xm|x1, . . . , xm−1) = fx̂m(xm|xm−1) . (162)

That is, the pdf of x̂m conditioned to x̂1, . . . , x̂m−1 is equal to the pdf of x̂m conditioned only to x̂m−1.
From this Markov property, Eq. (161) simplifies to

fx̂1,...,x̂n(x1, . . . , xn) = fx̂n(xn|xn−1) fx̂n−1(xn−1|xn−2) . . . fx̂2
(x2|x1) fx̂1

(x1) (163)

• Therefore, the joint pdf of x̂1, . . . , x̂n is determined only by the knowledge of fx̂1
(x1) and the conditional

pdfs fx̂m(x|y) (also known in this context as the transition probability from y to x).

• A Markov chain is called homogeneous if the transition probabilities fx̂m(x|y) are independent of m.
Thus, for a homogeneous Markov chain, we write the transition probabilities simply as f (x|y).

• It is easy to establish a relationship between fx̂m+1
(x) and fx̂m(y) using the definition of conditional

probability:

fx̂m+1
(x) =

∫ ∞
−∞

fx̂m+1,x̂m(x, y) dy =

∫ ∞
−∞

fx̂m+1
(x|y) fx̂m(y) dy m ≥ 1 , (164)
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which for a homogeneous chain reduces to

fx̂m+1
(x) =

∫ ∞
−∞

f (x|y) fx̂m(y) dy m ≥ 1 . (165)

• We can use this relation to construct the Markov chain. Starting from a given fx̂1
(x) initial pdf and

a transition pdf f (x|y), we can obtain the succession of random variables x̂m, m = 1, 2, . . . with the
respective pdfs fx̂m(x).

• If the resulting pdfs fx̂m(x) are all identical, fx̂m(x) = f st
x̂ (x), m = 1, 2, . . ., we say that the Markov

chain is stationary.

• Detailed balance: For a stationary Markov chain, Eq. (165) becomes

f st
x̂ (x) =

∫ ∞
−∞

f (x|y) f st
x̂ (y) dy . (166)

It is not easy, in general, to solve the above integral equation to find the stationary pdf of a Markov
chain with a given transition pdf f (x|y). However, using∫ ∞

−∞
f (y|x) dy =

∫ ∞
−∞

fx̂ŷ(x, y)

fx̂(x)
dy =

fx̂(x)

fx̂(x)
= 1 , (167)

we can write Eq. (166) as∫ ∞
−∞

f (y|x) f st
x̂ (x) dy =

∫ ∞
−∞

f (x|y) f st
x̂ (y) dy ⇒

⇒
∫ ∞
−∞

[f (y|x) f st
x̂ (x)− f (x|y) f st

x̂ (y)] dy = 0 . (168)
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A way to satisfy this equation is by requiring the detailed balance condition

f (y|x) f st
x̂ (x) = f (x|y) f st

x̂ (y) (169)

This is a simpler functional equation for f st
x̂ (x) than the integral Eq. (166). Any solution f st

x̂ (x) of the
detailed balance condition will satisfy Eq. (166), but the reverse is not always true.

• Certainly, if a pdf f st
x̂ (x) satisfies Eq. (166), then it is a stationary solution of the recurrence relation

(165) such that fx̂m(x) = f st
x̂ (x), ∀m, provided that fx̂1

(x) = f st
x̂ (x).

• What happens when fx̂1
(x) 6= f st

x̂ (x)? Will the recurrence (165) converge toward the stationary solution
f st
x̂ (x)? A partial, but important, answer can be formulated as follows: If for every point x such that
f st
x̂ (x) > 0 and for every initial condition fx̂1

(x), there exists a number m of iterations such that
fx̂m(x) > 0 (irreducibility condition) and the recurrence relation (165) does not get trapped in cyclic
loops, then f st

x̂ (x) is the unique stationary solution and, furthermore, limm→∞ fx̂m(x) = f st
x̂ (x).

• These conditions (irreducibility and noncyclic behavior) are summarized by saying that the Markov chain
is ergodic. The irreducibility condition has a simple intuitive interpretation. It states that, independent
of the initial condition, the recurrence relation (165) does not have ”forbidden” zones, meaning that it
is able to provide eventually a pdf with a nonzero probability to any point x such that f st

x̂ (x) > 0.

• Finally, we can consider that the variable m of the Markov chain represents, in some suitable units, a
time. In this sense, Eq. (165) introduces a dynamics in the space of pdfs. We will often make use of
this dynamical interpretation of a Markov chain in the rest of these notes.


	The probability space
	The -algebra of events
	Probability measures and Kolmogorov axioms
	Conditional probabilities and statistical independence

	Random variables
	Definition of random variables

	Average values, moments and characteristic function
	Some Important Probability Distributions
	Bernuilli distribution
	Binomial distribution
	Geometric distribution
	Uniform distribution
	Poisson distribution
	Exponential distribution
	Gaussian distribution

	Multivariate random variables
	Interpretation of the variance, statistical errors, and Chebyshev's theorem
	Sum of random variables
	Law of large numbers
	Central limit theorem
	Some examples and applications of the central limit theorem

	Conditional probabilities
	Markov chains

